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Abstract

Many causal parameters depend on a moment of the joint distribution of potential outcomes.

Such parameters are especially relevant in policy evaluation settings, where noncompliance is

common and accommodated through the model of Imbens & Angrist (1994). This paper shows

that the sharp identified set for these parameters is an interval with endpoints characterized

by the value of optimal transport problems. Sample analogue estimators are proposed based

on the dual problem of optimal transport. These estimators are
√
n-consistent and converge in

distribution under mild assumptions. Inference procedures based on the bootstrap are straight-

forward and computationally convenient. The ideas and estimators are demonstrated in an

application revisiting the National Supported Work Demonstration job training program. I find

suggestive evidence that workers who would see below average earnings without treatment tend

to see above average benefits from treatment.
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1 Introduction

Researchers studying the causal effects of a binary treatment see an observation’s treated or un-

treated outcome, but never both. As a result, the data identify the marginal distributions of each

potential outcome, but not their joint distribution. This “fundamental problem of causal inference”

(Holland, 1986) leaves parameters depending on the joint distribution partially identified.

In this paper I study a wide class of parameters that depend on a moment of the joint dis-

tribution of potential outcomes. My setting is the canonical potential outcomes framework with

binary treatment, a binary instrument satisfying a monotonicity restriction, and finitely supported

covariates (Imbens & Angrist, 1994; Abadie, 2003). In this setting, I show the sharp identified set

for such parameters is an interval with endpoints characterized by the value of optimal transport

problems. I propose sample analogue estimators based on the dual problem of optimal transport,

which facilitates both computation and asymptotic analysis. Through the functional delta method,

I show these estimators converge in distribution allowing for straightforward inference procedures

based on the bootstrap.

The proposed estimators are especially attractive due to their wide applicability and computa-

tional simplicity. The class of parameters under study is broad, including the correlation between

potential outcomes, the probability of benefitting from treatment, and many more examples dis-

cussed in section 2. As argued in Heckman et al. (1997), such parameters are of particular interest

to policymakers and economists carrying out econometric policy evaluation. Noncompliance with

the assigned treatment status is common in these settings. Most studies accomodate noncompli-

ance with the same framework adopted in this paper, and could make use of these estimators with

no additional identifying assumptions. Computing the estimator and constructing confidence sets

entails nothing more challenging than solving linear programming problems, for which there are

fast and efficient algorithms readily available.

This paper contributes to a large econometrics literature studying parameters of the joint dis-

tribution of potential outcomes. Many papers in this literature focus on a subset of the parameters

considered here, especially the cumulative distribution function (cdf) or quantiles of treatment ef-

fects (Manski, 1997; Heckman et al., 1997; Firpo, 2007; Fan & Park, 2010, 2012; Firpo & Ridder,

2019; Callaway, 2021; Frandsen & Lefgren, 2021). This limited focus allows greater use of known

analytical expressions when deriving sharp bounds, especially the famed Makarov bounds on the

cdf and Fréchet-Hoeffding bounds on the joint distribution. Several recent works develop meth-
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ods applicable to broad parameters classes by employing procedures that do not require analytical

expressions for the identified set. Russell (2021) studies continuous functionals of the joint distri-

bution of discrete potential outcomes, through a computationally intensive (sometimes infeasible)

search over all permissible distributions of model primitives. Fan et al. (2023) study parameters

identified through moment conditions in several incomplete data settings – including potential out-

comes – by searching over an infinite dimensional space of smooth copulas. This paper occupies a

middle ground: by focusing on parameters that depend on a scalar moment of the joint distribu-

tion and working with optimal transport, I obtain expressions for the bounds with tractable sample

analogues. This approach allows consideration of a wide variety of parameters while maintaining

computational tractability.

This paper also contributes to a growing literature on applications of optimal transport to

econometrics; see Galichon (2017) for a recent survey. Several recent working papers utilize optimal

transport for issues related to casual inference, including inverse propensity weighting (Dunipace,

2021), matching on covariates (Gunsilius & Xu, 2021), and obtaining counterfactual distributions

(Torous et al., 2021). In concurrent and highly complementary work, Ji et al. (2023) consider a

very similar class of parameters to the present paper and also propose inference based on the dual

problem of optimal transport. Their focus, accomodating non-discrete covariates without resorting

to parametric models, leads to theory based on cross fitting and high-level assumptions on first

stage estimators. The goal of the present paper is to provide simple, low-level conditions and

computationally convenient estimators in the common case where covariates are discrete. This

leads to theory based on Hadamard directional differentiability and the functional delta method

quite distinct from that of Ji et al. (2023).

The remainder of this paper is organized as follows. Section 2 formalizes the setting and

introduces the class of parameters under study. Optimal transport is introduced in section 3, and

used in identification in section 4. Section 5 proposes the estimators and contains the asymptotic

results. Section 6 explores the finite sample properties of the estimators in a brief simulation study.

Section 7 contains the application, showing suggestive evidence that the the National Supported

Work Demonstration job training program was especially beneficial for workers who would otherwise

see below average incomes. Section 8 discusses straightforward extensions. All formal results are

proven in the appendix.
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2 Setting and parameter class

2.1 Setting

Consider a potential outcomes framework with binary treatment, a binary instrument, and finitely

supported covariates (Imbens & Angrist (1994), Abadie (2003)). Let Y denote the scalar, real-

valued outcome of interest and D ∈ {0, 1} indicate treatment status. Further let Y1 denote the

potential outcome when treated and Y0 the potential outcome when untreated. The observed

outcome Y is given by

Y = DY1 + (1−D)Y0. (1)

The difference in potential outcomes, Y1 − Y0, is called the treatment effect.

The binary instrument is denoted Z ∈ {0, 1}. Let D1 denote the treatment status when Z = 1,

and D0 the treatment status when Z = 0. The observed treatment status D is given by

D = ZD1 + (1− Z)D0. (2)

It is assumed that the instrument itself does not affect the outcome.1 Units with 1 = D1 > D0 = 0

are known as compliers.

Assumption 1 formalizes the setting.

Assumption 1 (Setting). {Yi, Di, Zi, Xi}ni=1 is an i.i.d. sample with (Y,D,Z,X) ∼ P ,

Y ∈ Y ⊆ R, D ∈ {0, 1}, Z ∈ {0, 1}, X ∈ X = {x1, . . . , xM} ⊆ Rdx (3)

where Y , D, and Z are related to (Y1, Y0, D1, D0) through equations (1) and (2), and the random
vector (Y1, Y0, D1, D0, Z,X) satisfies

(i) Instrument independence: (Y1, Y0, D1, D0) ⊥ Z | X,
(ii) Monotonicity: P (D1 ≥ D0) = 1,

(iii) Existence of compliers: P (D1 > D0, X = x) > 0 for each x, and
(iv) P (X = x, Z = z) > 0 for each (x, z).

Assumption 1 is essentially equivalent to assumption 2.1 in Abadie (2003), with the addition that

covariates are finitely supported. Instrument independence is sometimes referred to as ignorability,

1One could hypothesize potential outcomes varying with the value of the instrument, i.e. Ydz for each (d, z). The
exposition here implicitly assumes instrument exclusion, also known as the Stable Unit Treatment Value Assumption:
that P (Yd1 = Yd0) = 1 for each d.
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and satisfied in most randomized controlled trials, where Z indicates being assigned to treatment.

Monotonicity is typically a weak assumption in such settings.

It is worth emphasizing that this setting nests the case where treatment is exogenous. Specif-

ically, when D1 = 1 and D0 = 0 (degenerately), every unit is a complier. In this case equation

(2) shows treatment status equals the instrument: D = Z. Instrument independence simplifies to

(Y1, Y0) ⊥ D | X, and monotonicity is trivially satisfied.

2.1.1 Distributions of compliers

Interest focuses on the distribution of compliers. Such focus is especially policy relevant when “the

policy is the instrument” i.e., the proposed change in policy is to assign Z = 1 to all units. Abadie

(2003) shows that assumption 1 suffices to identify the marginal distributions of Y1 and Y0 for the

subpopulation of compliers.

Lemma 2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distributions of Yd
conditional on D1 > D0 and X = x, denoted Pd|x, are identified by

EPd|x [f(Yd)] ≡ E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)
(4)

for any integrable function f . Furthermore, the distribution of X conditional on D1 > D0 is
identified by

sx ≡ P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

(5)

The joint distribution of potential outcomes is not identified. This is a result of the funda-

mental problem of causal inference: there is no unit where both Y1 and Y0 are observed, and as

a result the joint distribution of (Y1, Y0) is not identified for any subpopulation. Let P1,0 denote

the joint distribution of (Y1, Y0) conditional on compliance, and P1,0|x denote the joint distribution

conditional on compliance and X = x. These are related through the law of iterated expectations;

for any function c(y1, y0) with values in R,

EP1,0 [c(Y1, Y0)] = E[E[c(Y1, Y0) | D1 > D0, X] | D1 > D0] =
∑
x

sxEP1,0|x [c(Y1, Y0)].

This relation can also be expressed as P1,0 =
∑

x sxP1,0|x.
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A joint distribution with marginals P1|x and P0|x is called a coupling of P1|x and P0|x. P1,0|x is

such a coupling, and is otherwise unrestricted by assumption 1. Thus the identified set for P1,0|x is

the set of distributions π1,0|x for (Y1, Y0) with marginals π1|x = P1|x and π0|x = P0|x, denoted

Π(P1|x, P0|x) =
{
π1,0|x : π1|x = P1|x, π0|x = P0|x

}
. (6)

Moreover, the identified set for P1,0 is
{
π1,0 =

∑
x sxπ1,0|x : π1,0|x ∈ Π(P1|x, P0|x)

}
.

2.2 Parameter class

The idea at the core of this paper is to bound a moment of the joint distribution of potential

outcomes by optimization. Accordingly, the focus is on scalar parameters of the form

γ = g(θ, η) (7)

where g is a known function and θ = EP1,0 [c(Y1, Y0)] ∈ R is a scalar moment of the joint distribution

of (Y1, Y0) conditional on compliance. The function c is known, and referred to as a “cost function”

in connection with the optimal transport literature. This class of parameters is broad, as illustrated

by the examples given below. In each of these examples η is a finite collection of moments of the

marginal distributions conditional on compliers: η = (EP1 [η1(Y1)], EP0 [η0(Y0)]) ∈ RK1+K0 . The

formal results focus on this case, but could be generalized to allow η to be other point identified

nuisance parameters.

The following conditions are stronger than necessary for identification of the sharp identified set

of γ, but will be used when constructing and studying estimators. Assumption 2 places restrictions

on the cost function to ensure optimal transport can be used characterize and estimate the sharp

identified set for θ.

Assumption 2 (Cost function). Either

(i) c(y1, y0) is Lipschitz continuous and Y is compact, or

(ii) c(y1, y0) = 1{y1 − y0 ≤ δ} for a known δ ∈ R and the cumulative distribution functions
Fd|x(y) = P (Yd ≤ y | D1 > D0, X = x) are continuous.

Assumption 2 covers every example listed below. Continuous cost functions c are given a unified

analysis, but for reasons discussed in section 3 discontinuous cost functions must be handled on a

case-by-case basis. I focus on the leading case of interest in applications, c(y1, y0) = 1{y1−y0 ≤ δ},
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corresponding to the cumulative distribution of treatment effects. The approach developed in this

paper could likely be generalized to cover other discontinuous cost functions; for example, results

in the appendix allow estimation of the sharp lower bound of P ((Y1, Y0) ∈ C) for any open, convex

set C ⊆ R2.

Assumption 2 (ii) requires the cdfs Fd|x be continuous. As discussed in section 4, this ensures

the set being estimated is the sharp identified set for the parameter of interest. However, the

estimation and inference results of section 5 hold regardless of whether the cdfs are continuous or

not; when the cdfs are not continuous, the estimand is a valid outer identified set.

Under assumptions 1 and 2, the sharp identified set for θ is an interval [θL, θH ]. Assumption 3

contains conditions on g and η.

Assumption 3 (Function of moments). The parameter is γ = g(θ, η) ∈ R, where

θ = E[c(Y1, Y0) | D1 > D0] ∈ R, η = E
[
η1(Y1), η0(Y0) | D1 > D0

]
∈ RK1+K0

for known functions g, c, η1 and η0 such that

(i) E[‖ηd(Y )‖2] <∞ for d = 1, 0,

(ii) g(·, η) is continuous, and

(iii) the functions

gL(tL, tH , e) = min
t∈[tL,tH ]

g(t, e), gH(tL, tH , e) = max
t∈[tL,tH ]

g(t, e)

are continuously differentiable at (tL, tH , e) = (θL, θH , η).

Note that when θ itself is of interest, assumption 3 is satisfied with g(θ, η) = θ. Assumption 3

(ii) ensures the identified set for γ is the interval [γL, γH ], and assumption 3 (iii) is used to apply

the delta method. It is straightforward to show assumption 3 (iii) holds when g is continuously

differentiable in both arguments and g(·, η) is strictly increasing, as the latter condition implies

gL(θL, θH , η) = g(θL, η) and gH(θL, θH , η) = g(θH , η) and the former condition implies they are

continuously differentiable. This argument applies to every parameter listed below. When g is

differentiable but g(·, η) is not monotonic, it is often possible to use the implicit function theorem

applied to first order conditions to derive sufficient conditions for the corresponding arg min and

arg max to be differentiable, and thus for assumption 3 (iii) to hold.
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2.2.1 Examples

The following examples are intended both to fix ideas and illustrate the broad scope of the parameter

class described above.

Example 2.1 (Summary statistics). Many summary statistics can be rewritten in the form γ =
g(θ, η). For example, suppose interest is in the variance of treatment effects for compliers: γ =
Var(Y1 − Y0 | D1 > D0). This parameter can be rewritten as

γ = Var(Y1 − Y0 | D1 > D0) = EP1,0 [(Y1 − Y0)2]− (EP1 [Y1]− EP0 [Y0])2,

This parameter fits the form γ = g(θ, η) required of display (7), with θ = EP1,0 [(Y1 − Y0)2], η =

(η(1), η(2)) = (EP1 [Y1], EP0 [Y0]), and g(θ, η) = θ − (η(1) − η(2))2. The cost function c(y1, y0) =
(y1 − y0)2 satisfies assumption 2 (i) when Y, the support of the outcome Y , is bounded.

Similarly, suppose the researcher is interested in the correlation between Y1 and Y0 for compliers.
Set γ = Corr(Y1, Y0 | D1 > D0), which can be rewritten as

γ = Corr(Y1, Y0 | D1 > D0) =
EP1,0 [Y1Y0]− EP1 [Y1]EP0 [Y0]√

EP1 [Y 2
1 ]− (EP1 [Y1])2

√
EP0 [Y 2

0 ]− (EP0 [Y0])2

This parameter also fits the form γ = g(θ, η) in display (7), with θ = EP1,0 [Y1Y0], η = (η(1), η(2), η(3), η(4)) =

(EP1 [Y1], EP1 [Y 2
1 ], EP0 [Y0], EP0 [Y 2

0 ]), and g(θ, η) = θ−η(1)×η(3)√
η(2)−(η(1))2

√
η(4)−(η(3))2

. The cost function

c(y1, y0) = y1y0 satisfies assumption 2 (i) when Y is bounded.

Example 2.2 (Expected percent change). The expected percent change in the outcome can be

written as 100×E
[
Y1−Y0
Y0
| D1 > D0

]
%. This is a unit-invariant causal parameter that is a natural

summary measure when Y0 exhibits considerably variation. For example, a treatment effect of
Y1 − Y0 = 5 is typically of greater economic significance when the untreated outcome is small, say
Y0 = 10, than when Y0 = 100.

The expected percent change is proportional to

γ = E

[
Y1 − Y0

Y0
| D1 > D0

]
= EP1,0

[
Y1 − Y0

Y0

]
,

which fits the form of display (7), with γ = θ = EP1,0

[
Y1−Y0
Y0

]
. The cost function c(y1, y0) = y1−y0

y0

satisfies assumption 2 (i) when Y is bounded and bounded away from zero.

Example 2.3 (Equitable policies). Policy makers are often interested in whether a policy is eq-
uitable – that is, whether the benefits are concentrated among those who would have undesirable
outcomes without treatment.

One parameter that speaks to these concerns is the covariance between treatment effects and
untreated outcomes among compliers: γ = Cov(Y1 − Y0, Y0 | D1 > D0). Notice that γ < 0 implies
those with below average Y0 tend to see above average treatment effects. This parameter can be
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rewritten as

γ = Cov(Y1 − Y0, Y0 | D1 > D0) = EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

and fits the form g(θ, η) with θ = EP1,0 [(Y1−Y0)Y0], η = (EP1 [Y1], EP0 [Y0]), and g(θ, η) = θ−(η(1)−
η(2))η(2). The cost function c(y1, y0) = (y1 − y0)y0 satisfies assumpion 2 (i) when Y is bounded.

Many related parameters share a sign with Cov(Y1− Y0, Y0 | D1 > D0) and are also suitable for
such an analysis. One such example is the OLS slope when regressing Y1−Y0 on Y0 and a constant:
γ = Cov(Y1−Y0,Y0|D1>D0)

Var(Y0|D1>D0) . This parameter can be rewritten as

γ =
Cov(Y1 − Y0, Y0 | D1 > D0)

Var(Y0 | D1 > D0)
=
EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

EP0 [Y 2
0 ]− (EP0 [Y0])2

where θ = EP1,0 [(Y1 − Y0)Y0], η = (EP1 [Y1], EP0 [Y0], EP0 [Y 2
0 ]), and g(θ, η) = θ−(η(1)−η(2))η(2)

η(3)−(η(2))2 .

Example 2.4 (Proportion that benefit). The share of compliers benefiting from treatment, written

γ = P (Y1 > Y0 | D1 > D0),

is naturally of interest in applications where theory gives little indication whether the treatment
will have a positive or negative effect. For example, Allcott et al. (2020) study the effect of deac-
tivating facebook on subjective well-being. The authors find significant positive average effects of
deactivation, but find substantial heterogeneity in follow-up interviews.

This parameter fits the form of display (7), with γ = θ = EP1,0 [1{Y1 − Y0 ≤ 0}]. The cost
function c(y1, y0) = 1{y1 − y0 ≤ 0} satisfies assumption 2 (ii) if the cdfs Fd|x(y) are continuous.

The share benefiting from treatment is also of particular interest when the intervention comes
at a financial cost and the outcome of interest is a pecuniary return. Common examples include
job training programs intended to increase a worker’s income (e.g. the National Supported Work
Demonstration studied in Couch (1992)) or management practices intended to raise a firm’s ac-
counting profit (e.g. the employee referral program studied in Friebel et al. (2023)). To illustrate,
suppose the researcher observes {Ri, Ci, Di, Zi}ni=1, where R is observed revenue and C is the ob-
served cost. These are related to treatment status D ∈ {0, 1}, potential revenues (R1, R0), and
potential costs (C1, C0) by

R = DR1 + (1−D)R0, C = DC1 + (1−D)C0

The observed profit, Y = R− C, is related to treatment status by

Y = D (R1 − C1)︸ ︷︷ ︸
:=Y1

+(1−D) (R0 − C0)︸ ︷︷ ︸
:=Y0

The probability the change in revenue exceeds the change in cost is

P (R1 −R0 > C1 − C0 | D1 > D0) = P (Y1 > Y0 | D1 > D0)
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Example 2.5 (Quantiles). Suppose the parameter of interest is any qτ solving

P (Y1 − Y0 ≤ qτ | D1 > D0) = τ (8)

This parameter has a similar interpretation to the τ -th quantile.2 qτ cannot be viewed as γ = g(θ, η).
However, by viewing θ(δ) = P (Y1 − Y0 ≤ δ | D1 > D0) = EP1,0 [1{Y1 − Y0 ≤ δ}] as a function of δ,
the results below can be adapted to construct a confidence set for the identified set of this parameter
as described in section 8.2.

3 Optimal Transport

This section defines and discusses optimal transport, which is used to characterize the identified

set and construct estimators.

Given any marginal distributions P1 and P0 and a “cost function” c(y1, y0), the Monge-Kantorovich

formulation of optimal transport is the problem of choosing a coupling π ∈ Π(P1, P0) to minimize

Eπ[c(Y1, Y0)]:

OTc(P1, P0) = inf
π∈Π(P1,P0)

Eπ[c(Y1, Y0)]. (9)

This minimization problem in (9) is referred to as the primal problem, and will be used to

characterize the identified set of θ.

The dual problem of optimal transport will be used to construct and analyze estimators. Let

Φc denote the set of functions ϕ(y1) and ψ(y0) whose pointwise sum is less than c(y1, y0):

Φc = {(ϕ,ψ) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} . (10)

The dual problem chooses a pair of functions in Φc to maximize the sum of the corresponding

expectations:

sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (11)

When the cost function is lower semicontinuous and bounded from below, the primal problem is

attained and strong duality holds:

OTc(P1, P0) = min
π∈Π(P1,P0)

Eπ[c(Y1, Y0)] = sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (12)

2The τ -th quantile is usually defined as the unique value q̃τ = inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}. When the τ level
set of the cumulative distribution function P (Y1 − Y0 ≤ ·) is nonempty, the τ -th quantile has the interpretation
that 100 × τ% of the population has treatment effect less than or equal to q̃τ . Every qτ solving (8) has the same
interpretation.
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The dual problem will be used to construct and analyze estimators. Indeed, the identification of

Pd|x in lemma 2.1 suggests straightforward sample analogues estimating EPd|x [f(Yd)] for a given f ,

which makes it possible to form a sample analogue of the dual problem.

Although it is clear how to form a sample analogue of the dual problem, it is not immediately

clear how to analyze the resulting estimator. Fortunately, the dual problem can often be simplified

by restricting the maximization problem to a smaller set of functions. Estimators based on this

restricted dual problem can then be studied with empirical process techniques.

The dual feasible set is restricted with the concept of c-concavity. Notice the dual problem’s

objective is monotonic, in the sense that ϕ(y1) ≤ ϕ̃(y1) for all y1 implies

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] ≤ EP1 [ϕ̃(Y1)] + EP0 [ψ(Y0)].

Increasing ψ pointwise will also increase the dual objective. Speaking loosely, any function pair

(ϕ,ψ) ∈ Φc for which the constraint ϕ(y1) +ψ(y0) ≤ c(y1, y0) is “slack” cannot be a solution to the

dual problem and can therefore be ignored. This motivates the definition of the c-transforms of

a function ϕ:

ϕc(y0) = inf
y1

{c(y1, y0)− ϕ(y1)}, ϕcc(y1) = inf
y0

{c(y1, y0)− ϕc(y0)}.

For any pair of functions (ϕ,ψ) ∈ Φc, these definitions imply ψ(y0) ≤ ϕc(y0), ϕ(y1) ≤ ϕcc(y1),

and ϕcc(y1) + ϕc(y0) ≤ c(y1, y0). Further c-transformations are irrelevant because (ϕcc)c = ϕc, so

a function ϕ is called c-concave if ϕcc = ϕ. If the c-transforms are integrable, the dual problem

can be restricted to c-concave conjugate pairs, (ϕcc, ϕc). Furthermore, c-concave functions often

“inherit” properties of the cost function c; for example, if c is Lipschitz continuous then ϕc and ϕcc

are Lipschitz continuous as well. These properties can be used to define sets of functions Fc and

Fcc (depending on the cost function c but not on the distributions P1, P0) such that

sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (13)

Two cases suffice for the parameters considered in this paper. When the cost function c(y1, y0)
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is Lipschitz continuous and Y is compact, define

Fc =
{
ϕ : Y → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y1)− ϕ(y′1)| ≤ L|y1 − y′1|

}
(14)

Fcc =
{
ψ : Y → R ; −2‖c‖∞ ≤ ψ(y0) ≤ 0, |ψ(y0)− ψ(y′0)| ≤ L|y0 − y′0|

}
(15)

where ‖c‖∞ = sup(y1,y0)|c(y1, y0)| and L is the Lipschitz constant of c. When c(y1, y0) = 1{(y1, y0) ∈

C} for an open, convex set C, let

Fc = {ϕ : Y → R ; ϕ(y1) = 1{y1 ∈ I} for some interval I} (16)

Fcc = {ψ : Y → R ; ψ(y0) = −1{y0 ∈ Ic} for some interval I} (17)

Equation (13) shows the optimal transport functional OTc(P1, P0) depends only on the values

of EP1 [ϕ(Y1)] and EP0 [ψ(Y0)] for (ϕ,ψ) ∈ Fc × Fcc . For any set A, let `∞(A) denote the space

of real-valued bounded functions defined on A, equipped with the supremum norm: `∞(A) =

{f : A→ R ; ‖f‖∞ = supa∈A|f(a)| <∞}. Optimal transport can be viewed as the map OTc :

`∞(Fc)× `∞(Fcc )→ R given by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (18)

This problem will be referred to as the restricted dual problem. Estimators formed with this

map can be studied with empirical process techniques.

In summary, OTc(P1, P0) will be viewed as the functional in (9) when considering identification,

and as the functional given in (18) when considering estimation. By ensuring c is either Lipschitz

continuous or the indicator of an open convex set, strong duality and c-concavity ensures these

functionals agree on the space of probability distributions.

4 Identification

Recall the parameter of interest is γ = g(θ, η), where η is a point identified parameter, θ =

EP1,0 [c(Y1, Y0)] ∈ R, and g and c are known functions.

Begin by rewriting θ = EP1,0 [c(Y1, Y0)] = E[c(Y1, Y0) | D1 > D0] with the law of iterated
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expectations:

θ = E[E[c(Y1, Y0) | D1 > D0, X] | D1 > D0] = E[θX | D1 > D0] =
∑
x

sxθx

where sx = P (X = x | D1 > D0) and θx = E[c(Y1, Y0) | D1 > D0, X = x] = EP1,0|x [c(Y1, Y0)].

As noted in section 2.1.1, the identified set for P1,0|x is the set of couplings of P1|x and P0|x, denoted

Π(P1|x, P0|x). Thus the identified set for θx is ΘI,x =
{
t ∈ R : t = Eπ[c(Y1, Y0)] for some π ∈ Π(P1|x, P0|x)

}
.

Π(P1|x, P0|x) is convex, implying that ΘI,x is an interval. Let θLx and θHx denote its lower and upper

endpoint respectively.

To ensure the restricted dual problem can be used for estimation, θLx and θHx are characterized

through an optimal transport problem with a suitable cost function c. When assumption 2 (i) holds

(c(y1, y0) is Lipschitz continuous and Y is compact), define

cL(y1, y0) = c(y1, y0), cH(y1, y0) = −c(y1, y0)

θL(P1|x, P0|x) = OTcL(P1|x, P0|x), θH(P1|x, P0|x) = −OTcH (P1|x, P0|x). (19)

Note that θLx = θL(P1|x, P0|x) and θHx = θH(P1|x, P0|x).

The cumulative distribution function of Y1 − Y0 corresponds to the cost function c(y1, y0) =

1{y1−y0 ≤ δ}, which is not lower semicontinuous. This challenge is circumvented by a small change

in the cost function. When assumption 2 (ii) holds (the cost function is c(y1, y0) = 1{y1− y0 ≤ δ})

define

cL(y1, y0) = 1{y1 − y0 < δ}, cH = 1{y1 − y0 > δ}

θL(P1|x, P0|x) = OTcL(P1|x, P0|x), θH(P1|x, P0|x) = 1−OTcH (P1|x, P0|x) (20)

It follows from definitions that θHx = θH(P1|x, P0|x). Moreover, cL(y1, y0) ≤ c(y1, y0) implies

θL(P1|x, P0|x) is a valid lower bound for θx. It is sharp if P1|x, P0|x have continuous cumula-

tive distribution functions, in which case θLx = θL(P1|x, P0|x). It is worth emphasizing again that

the estimation and inference results of section 5 hold regardless of whether the cdfs are continuous

or not; when the cdfs are not continuous, the estimand is a valid outer identified set.

Under assumptions 1 and 2, the identified set for θ = EP1,0 [c(Y1, Y0)] = E[c(Y1, Y0) | D1 > D0]

12



is the compact interval [θL, θH ] with endpoints

θL = E[θLX | D1 > D0] =
∑
x

sxθ
L
x , θH = E[θHX | D1 > D0] =

∑
x

sxθ
H
x

Under assumptions 1, 2, and 3, the identified set for γ is [γL, γH ], with endpoints

γL = gL(θL, θH , η) = inf
t∈[θL,θH ]

g(t, η), γH = gH(θL, θH , η) = sup
t∈[θL,θH ]

g(t, η) (21)

The following theorem summarizes the discussion above. Let θL(·, ·) and θH(·, ·) be given by (19)

or (20) depending on the cost function, and set

θLx = θL(P1|x, P0|x), θHx = θH(P1|x, P0|x), (22)

θL =
∑
x

sxθ
L
x , θH =

∑
x

sxθ
H
x , (23)

γL = gL(θL, θH , η), γH = gH(θL, θH , η) (24)

Theorem 4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3 are
satisfied. Then the sharp identified set for γ is [γL, γH ].

All results are proven in the appendix.

It is worth pausing to consider the role of covariates. When covariates are available, ignoring

them leads to wider bounds that are not sharp. Specifically, the marginal distributions P1 and

P0 could be used to form a lower bound on θ with θL(P1, P0) = infπ∈Π(P1,P0)Eπ[cL(Y1, Y0)]. This

bound minimizes over the whole set Π(P1, P0) = {π1,0 ; π1 = P1, π0 = P0}, but the identified set

for P1,0 is the subset of Π(P1, P0) given by
{
π1,0 =

∑
x sxπ1,0|x ; π1,0|x ∈ Π(P1|x, P0|x)

}
. The bound

defined through equations (22) and (23) is found while enforcing the additional constraints that

π1,0|x ∈ Π(P1|x, P0|x) for each x. These additional constraints imply θL(P1, P0) ≤ θL, and similarly

θH ≤ θH(P1, P0).

Extreme cases illustrate when covariates are informative. If X is independent of (Y1, Y0) con-

ditional on D1 > D0, then Pd|x = Pd for each x, Π(P1|x, P0|x) = Π(P1, P0), and the inequalities

above hold as equalities. On the other hand, if Pd|x is degenerate for either d = 1 or d = 0, then

there is only one possible coupling of P1|x and P0|x. Since Π(P1|x, P0|x) is a singleton, θLx = θHx and

θx = E[c(Y1, Y0) | D1 > D0, X = x] is point identified. If this occurs for all x ∈ X , θ and γ are
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point identified.

Remark 4.1 (Makarov bounds). The proof of theorem 4.1 given in the appendix uses properties of
optimal transport to argue that under assumptions 1 and 2 (ii), [θL, θH ] is the sharp identified set
for P (Y1 − Y0 ≤ δ | D1 > D0). Nonetheless, it is interesting to note that the proof shows

θLx = OTcL(P1|x, P0|x) = sup
y
{F1|x(y)− F0|x(y − δ)}

θHx = 1−OTcH (P1|x, P0|x) = 1− sup
y
{F0|x(y − δ)− F1|x(y)} = 1 + inf

y
{F1|x(y)− F0|x(y − δ)}

which are the Makarov bounds on P (Y1−Y0 ≤ δ | D1 > D0, X = x) studied in Fan & Park (2010).

Remark 4.2 (Pointwise vs. uniformly sharp CDF bounds). Under assumptions 1 and 2 (ii), [θL, θH ]
is the sharp identified set for P (Y1 − Y0 ≤ δ | D1 > D0) at the point δ. Viewing these bounds
as functions of δ, θL(δ) and θH(δ) are not uniformly sharp bounds for the cumulative distribution
function P (Y1−Y0 ≤ δ | D1 > D0), in the sense that not every CDF F (·) satisfying θL(δ) ≤ F (δ) ≤
θH(δ) for all δ could be the CDF of Y1 − Y0. See Firpo & Ridder (2019) for a detailed discussion
of this point.

5 Estimators

Sample analogues of the expressions identifying P1|x, P0|x, and sx in lemma 2.1 provide convenient

plug-in estimators of γL and γH .

The following notation simplifies expressions for the sample analogues. Let P denote the dis-

tribution of an observation (Y,D,Z,X), and f be a real-valued function. Use P (f) to mean

EP [f(Y,D,Z,X)]. Similarly, let Pd|x(f) = EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]. Let

Pn denote the empirical distribution formed from the sample {Yi, Di, Zi, Xi}ni=1, and Pn(f) =

1
n

∑n
i=1 f(Yi, Di, Zi, Xi). The following indicator function notation also simplifies expressions:

1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z},

1x,z(X,Z) = 1{X = x, Z = z}, 1x(X) = 1{X = x}

For example, P (D = d,X = x, Z = z) shortens to P (1d,x,z), and 1
n

∑n
i=1 1{Di = 1, Xi = x, Zi = 0}

to Pn(11,x,0).

The probabilities pd,x,z = P (1d,x,z), px,z = P (1x,z), and px = P (1x) are estimated with empiri-

cal analogues:

p̂d,x,z = Pn(1d,x,z), p̂x,z = Pn(1x,z), p̂x = Pn(1x)
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In this notation, sx = P (X = x | D1 > D0) and its empirical analogue ŝx are

sx =
(p1,x,1/px,1 − p1,x,0/px,0)px∑
x′(p1,x′,1/px′,1 − p1,x′,0/px′,0)p′x

, ŝx =
(p̂1,x,1/p̂x,1 − p̂1,x,0/p̂x,0)p̂x∑
x′(p̂1,x′,1/p̂x′,1 − p̂1,x′,0/p̂x′,0)p̂x′

(25)

The maps Pd|x and their empirical analogues are

Pd|x(f) =
P (1d,x,d × f)/px,d − P (1d,x,1−d × f)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d

P̂d|x(f) =
Pn(1d,x,d × f)/p̂x,d − Pn(1d,x,1−d × f)/p̂x,1−d

p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d
(26)

Under assumption 3, η = (η1, η0) = (EP1 [η1(Y1)], EP0 [η0(Y0)]). Each vector ηd ∈ RKd has coordi-

nates η
(k)
d =

∑
x sxPd|x(η

(k)
d ). Empirical analogues η̂ = (η̂1, η̂0) are formed by η̂

(k)
d =

∑
x ŝxP̂d|x(η

(k)
d ).

Computing P̂d|x(f) for a known f is straightforward:

P̂d|x(f) =

1
p̂x,d

1
n

∑n
i=1 1d,x,d(Di, Xi, Zi)f(Yi)− 1

p̂x,1−d
1
n

∑n
i=1 1d,x,1−d(Di, Xi, Zi)f(Yi)

p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d

=

n∑
i=1

ωd,x,i × fi

where fi = f(Yi) and the weights ωd,x,i can be computed directly from data:

ωd,x,i =
1

n
×
1d,x,d(Di, Xi, Zi)/p̂x,d − 1d,x,1−d(Di, Xi, Zi)/p̂x,1−d

p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d
(27)

Sample analogue estimators of γL and γH are based on equations (19), (20), (22), (23), and (24).

These expressions involve the optimal transport functional OTc(P1|x, P0|x). The sample analogue

of the simplified dual problem discussed in section 3 is written

OTc(P̂1|x, P̂0|x) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1|x(ϕ) + P̂0|x(ψ) (28)

Here Fc, Fcc , and the functions θL(·), θH(·) are defined according to the cost function:

(i) When assumption 2 (i) holds (the cost function c(y1, y0) is Lipschitz continuous and Y is

compact), Fc and Fcc are given by:

Fc =
{
ϕ : Y → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y1)− ϕ(y′1)| ≤ L|y1 − y′1|

}
Fcc =

{
ψ : Y → R ; −2‖c‖∞ ≤ ψ(y0) ≤ 0, |ψ(y0)− ψ(y′0)| ≤ L|y0 − y′0|

}
15



and θL(P̂1|x, P̂0|x), θH(P̂1|x, P̂0|x) are analogues of equation (19):

cL(y1, y0) = c(y1, y0), cH(y1, y0) = −c(y1, y0)

θL(P̂1|x, P̂0|x) = OTcL(P̂1|x, P̂0|x), θH(P̂1|x, P̂0|x) = −OTcH (P̂1|x, P̂0|x).

(ii) When assumption 2 (ii) holds (the cost function is c(y1, y0) = 1{y1− y0 ≤ δ}), Fc and Fcc are

given by:

Fc = {ϕ : Y → R ; ϕ(y1) = 1{y1 ∈ I} for some interval I}

Fcc = {ψ : Y → R ; ψ(y0) = −1{y0 ∈ Ic} for some interval I}

and θL(P̂1|x, P̂0|x), θH(P̂1|x, P̂0|x) are analogues of equation (20):

cL(y1, y0) = 1{y1 − y0 < δ}, cH = 1{y1 − y0 > δ}

θL(P̂1|x, P̂0|x) = OTcL(P̂1|x, P̂0|x), θH(P̂1|x, P̂0|x) = 1−OTcH (P̂1|x, P̂0|x)

The sample analogue estimators are given by

θ̂Lx = θL(P̂1|x, P̂0|x), θ̂Hx = θH(P̂1|x, P̂0|x), (29)

θ̂L =
∑
x

ŝxθ̂
L
x , θ̂H =

∑
x

ŝxθ̂
H
x , (30)

γ̂L = gL(θ̂L, θ̂H , η̂), γ̂H = gH(θ̂L, θ̂H , η̂) (31)

The optimization problems in θL(P̂1|x, P̂0|x) and θH(P̂1|x, P̂0|x) are especially straightforward

when treatment is exogenous. Recall the claim of equation (13): the supremum of P1|x(ϕ)+P0|x(ψ)

over the larger set Φc is the same value when restricted to Φc ∩ (Fc × Fcc ). The argument behind

this claim uses monotonicity of the maps Pd|x. When treatment is exogenous, P̂d|x corresponds to a

probability distribution and is therefore also monotonic. Thus the claim holds replacing Pd|x with
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P̂d|x, implying the function classes Fc and Fcc can be ignored in computation:

OTc(P̂1|x, P̂0|x) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1|x(ϕ) + P̂0|x(ψ) = sup
(ϕ,ψ)∈Φc

P̂1|x(ϕ) + P̂0|x(ψ)

= sup
{ϕi,ψj}i,j

n∑
i=1

ω1,x,iϕi +
n∑
j=1

ω0,x,jψj (32)

s.t. ϕi + ψj ≤ c(Yi, Yj) for all 1 ≤ i, j ≤ n

the final problem in this display is a linear programming problem with 2n choice variables and

n2 constraints, and can be further simplified by removing choice variables (and the corresponding

constraints) whose weights ωd,x,i equal zero. Many weights do equal zero, as only observations with

Xi = x correspond to nonzero weights.

When there is noncompliance in the sample, P̂d|x does not correspond to a probability distri-

bution. This is easily seen by noting that for observations i where Zi differs from Di, the weight

ωd,x,i defined in (27) is negative. Nonetheless, it remains computationally tractable to search over

Φc ∩ (Fc × Fcc ). For example, when the cost function is continuous OTc(P̂1|x, P̂0|x) remains a

linear programming problem, with additional linear constraints enforcing |ϕi + ψj | ≤ L|Yi − Yj |,

−‖c‖∞ ≤ ϕi ≤ ‖c‖∞, and −2‖c‖∞ ≤ ψj ≤ 0.

5.1 Asymptotic analysis

The estimators proposed above are especially attractive because they are a (Hadamard direc-

tionally) differentiable map of the empirical distribution. Specifically, there exists a collection of

functions F and a map T : `∞(F) → R2 described by equations (25), (26), (29), (30), and (31)

such that

(γ̂L, γ̂H) = T (Pn), (γL, γH) = T (P )

The set F consists of the functions in Fc, Fcc , and the coordinate functions defining η, multiplied

by various indicator functions. It is formally defined in appendix C. Under assumption 1, 2, and

3, F is a Donsker set and T (·) is continuous at P , which implies the esimators are consistent:

(γ̂L, γ̂H) = T (Pn)
p→ T (P ) = (γL, γH) (33)
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5.1.1 Weak convergence

The map T (·) is not only continuous under assumptions 1, 2, and 3, but Hadamard directionally

differentiable. An application of the functional delta method gives the conclusion
√
n((γ̂L, γ̂H) −

(γL, γH)) converges in distribution, a result stated formally in theorem 5.2 below.

In order to build hypothesis tests or construct confidence intervals based on the asymptotic

distribution of
√
n((γ̂L, γ̂H)− (γL, γH)), one must be able to estimate the asymptotic distribution.

This is possible under assumptions 1, 2, and 3, but involves a more complex procedure described

in section 5.2.2. Under an additional assumption, a straightforward bootstrap will do.

For each instance of the restricted dual problem used in defining T (·), the set of maximizers

Ψc(P1|x, P0|x) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ) (34)

is nonempty. If the solutions are suitably unique for each instance, the map T (·) is fully Hadamard

differentiable at P and a straightforward bootstrap will consistently estimate the asymptotic dis-

tribution.

Assumption 4 states this high-level uniqueness condition, while the following lemma 5.1 gives

low-level sufficient conditions for it to hold. Let Yd,x be the support of Y conditional on D = d

and X = x, and 1Yd,x(y) = 1{y ∈ Yd,x} be the indicator function for this set.

Assumption 4. For each x ∈ X , each c ∈ {cL, cH}, and any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1|x, P0|x),
there exists s ∈ R such that

1Y1,x × ϕ1 = 1Y1,x × (ϕ2 + s), P -a.s. and 1Y0,x × ψ1 = 1Y0,x × (ψ2 − s), P -a.s.

Lemma 5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(y1, y0) that is continuously differentiable, and

(ii) for each (d, x), the support of Pd|x is Yd,x, which is a bounded interval.

Then assumption 4 holds.

When treatment is exogenous, condition (ii) of lemma 5.1 simplifies to the assumption that the

distribution of Yd | X = x has bounded support [y`d,x, y
u
d,x]. In general, this condition requires the

support of Yd for the subpopulation of compliers with covariate value x is a bounded interval that

contains the support of the relevant subpopulation of non-compliers. Specifically, the support of Y1

18



for compliers is a bounded interval containing the support of Y1 for always-takers, and the support

of Y0 for compliers is a bounded interval containing the support of Y0 for never-takers.

Assumption 4 can hold even when the conditions of lemma 5.1 do not. For example, when

interest is in the cumulative distribution function and assumption 2 (ii) is satisfied, the dual problem

is essentially optimizing over the difference of CDFs (see remark 4.1). Although the cost functions

are not continuously differentiable, it is still plausible for this optimization problem to have a unique

solution in well-behaved cases. For further discussion of uniqueness of the dual solutions of optimal

transport, see Staudt et al. (2022).

The following theorem gives the main weak convergence result.

Theorem 5.2. Suppose assumptions 1, 2, and 3 hold, and let G be the weak limit of
√
n(Pn − P )

in `∞(F). Then T is Hadamard directionally differentiable at P tangentially to the support of G,
and

√
n((γ̂L, γ̂H)− (γL, γH)) =

√
n(T (Pn)− T (P ))

L→ T ′P (G)

If assumption 4 also holds, then T ′P is linear on the support of G and T ′P (G) is bivariate normal.

5.2 Inference

To make use of the weak convergence result of theorem 5.2 for inference, this section develops

methods of estimating the law of T ′P (G) by utilizing the bootstrap. The “exchangeable bootstrap”

procedures discussed in van der Vaart & Wellner (1997) are computationally convenient for reasons

discussed below. These procedures define a new map P∗n ∈ `∞(F) pointwise with

P∗n(f) =
1

n

n∑
i=1

Wif(Yi, Di, Zi, Xi) (35)

for nonnegative random variables {Wi}ni=1 independent of the data {Yi, Di, Zi, Xi}ni=1, and satisfying

technical conditions omitted here. I focus on two notable examples, the nonparametric bootstrap

of Efron (1979) and the “Bayesian” bootstrap of Rubin (1981). Either bootstrap can be used to

estimate the asymptotic distribution. The Bayesian bootstrap may be preferable in small samples

for reasons discussed below.

Definition 5.1 (Nonparametric bootstrap). Let (W1, . . . ,Wn) ∼ Multinomial(n, (1/n, . . . , 1/n))
be independent of the data {Yi, Di, Zi, Xi}ni=1. Define P∗n ∈ `∞(F) pointwise with (35).
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Definition 5.2 (Bayesian bootstrap). Let {ξi}ni=1 be i.i.d. exponentially distributed random vari-
ables with mean 1, independent of the data {Yi, Di, Zi, Xi}ni=1. Set Wi = ξi/(n

−1
∑n

i=1 ξi), and
define P∗n ∈ `∞(F) pointwise with (35).

The map P∗n in (35) can be used to compute (γ̂L∗, γ̂H∗) = T (P∗n) in much the same way that

T (Pn) is computed. Specifically, bootstrap analogues of p̂d,x,z, p̂x,z, and p̂x are given by

p̂∗d,x,z =
1

n

n∑
i=1

Wi1d,x,z(Di, Xi, Zi), p̂∗x,z =
1

n

n∑
i=1

Wi1x,z(Xi, Zi), p̂∗x =
1

n

n∑
i=1

Wi1x(Xi),

and the bootstrap analogue of ŝx is

ŝ∗x =
(p̂∗1,x,1/p̂

∗
x,1 − p̂∗1,x,0/p̂∗x,0)p̂∗x∑

x′(p̂
∗
1,x′,1/p̂

∗
x′,1 − p̂∗1,x′,0/p̂∗x′,0)p̂∗x′

The maps P̂d|x have bootstrap analogues

P̂ ∗d|x(f) =
P∗n(1d,x,d × f)/p̂∗x,d − P∗n(1d,x,1−d × f)/p̂∗x,1−d

p̂∗d,x,d/p̂
∗
x,d − p̂∗d,x,1−d/p̂∗x,1−d

=
n∑
i=1

ω∗d,x,ifi

where fi = f(Yi) and ω∗d,x,i are bootstrap versions of the weights in (27):

ω∗d,x,i =
Wi

n
×
1d,x,d(Di, Xi, Zi)/p̂

∗
x,d − 1d,x,1−d(Di, Xi, Zi)/p̂

∗
x,1−d

p̂∗d,x,d/p̂
∗
x,d − p̂∗d,x,1−d/p̂∗x,1−d

(36)

Finally, (γ̂L∗, γ̂H∗) can be computed with

θ̂L∗x = θL(P̂ ∗1|x, P̂
∗
0|x), θ̂H∗x = θH(P̂ ∗1|x, P̂

∗
0|x), (37)

θ̂L∗ =
∑
x

ŝ∗xθ̂
L∗
x , θ̂H∗ =

∑
x

ŝ∗xθ̂
H∗
x , (38)

γ̂L∗ = gL(θ̂L∗, θ̂H∗, η̂∗), γ̂H∗ = gH(θ̂L∗, θ̂H∗, η̂∗) (39)

5.2.1 Simple bootstrap with full differentiability

Under assumption 4, estimating the distribution of T ′P (G) is straightforward.

Theorem 5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P∗n be given by definition 5.1 or
5.2. Then conditional on {Yi, Di, Zi, Xi}ni=1,

√
n(T (P∗n)− T (Pn))

L→ T ′P (G)
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in outer probability.

It is worth emphasizing the computationally convenience of the bootstrap P∗n given in (35) when

treatment is exogenous. The weights given in display (36) simplify to

ω∗d,x,i =
Wi

n
× 1{Di = d,Xi = x}

p̂∗x,d
(40)

As these weights are nonnegative and sum to one, P̂ ∗d|x is a probability distribution. Accordingly,

θL(P̂ ∗1|x, P̂
∗
0|x) and θH(P̂ ∗1|x, P̂

∗
0|x) can be computed ignoring the function classes Fc and Fcc for the

same reasons discussed around display (32):

OTc(P̂
∗
1|x, P̂

∗
0|x) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )
P̂ ∗1|x(ϕ) + P̂ ∗0|x(ψ) = sup

(ϕ,ψ)∈Φc

P̂ ∗1|x(ϕ) + P̂ ∗0|x(ψ)

= sup
{ϕi,ψj}i,j

n∑
i=1

ω∗1,x,iϕi +
n∑
j=1

ω∗0,x,jψj

s.t. ϕi + ψj ≤ c(Yi, Yj) for all 1 ≤ i, j ≤ n

A researcher utilizing the nonparametric bootstrap runs the risk of a boostrap draw including

no observations with 1{Di = d,Xi = x}. As p̂∗x,d = 1
n

∑n
i=1Wi1{Di = d,Xi = x}, this would

result in the formula in (40) attempting to divide by zero. This problem cannot arise when using

the Bayesian bootstrap suggested in 5.2; in this procedure Wi > 0 for each i, and thus p̂∗x,d =

1
n

∑n
i=1Wi1{Di = d,Xi = x} > 0 as long as p̂d,x > 0.

5.2.2 Alternative for directional differentiability

The solutions to optimal transport may not be unique as assumption 4 requires. As emphasized

in the statement of theorem 5.2, assumption 4 is not needed to obtain the asymptotic distribution

of the estimators. However, without assumption 4 the procedure suggested by lemma 5.3 may not

consistently estimate that limiting distribution. When in doubt, researchers can make use of an

alternative procedure based on the results of Fang & Santos (2019) and described below.

Additional notation is needed to describe this alternative. Let η
(k)
d,x = Pd|x(η

(k)
d ), and let T1(·)

denote the “first stage” function computing P1|x, P0|x, η1,x, η0,x, and sx for each x:

T1(P ) =
({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
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Here {ax}x∈X = (ax1 , . . . , axM ). Let {κn}∞n=1 be a sequence in R satisfying κn ↑ ∞ and κn/
√
n→ 0.

Define the set of empirical approximate maximizers:

Ψ̂c,x =

{
(ϕ,ψ) ∈ Φc ∩ (Fc ×Fcc ) ; OTc(P̂1|x, P̂0|x) ≤ P̂1|x(ϕ) + P̂0|x(ψ) +

κn√
n

}

and the maps

ÔT
′
c,x(H1, H0) = sup

(ϕ,ψ)∈Ψ̂c,x

H1(ϕ) +H0(ψ),

and

T̂ ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
ÔT
′
cL,x

(H1,x, H0,x),−ÔT
′
cH ,x

(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)
The alternative procedure uses the conditional law of

D̂4D̂3T̂
′
2,T1(P )

(√
n(T1(P∗n)− T1(Pn))

)
given the data, where D̂4 and D̂3 are matrices given by

D̂3 =
[
D̂3,x1 D̂s,x2 . . . D̂s,xM

]
(2+dη)×M(3+dη)

, D̂3,x =


ŝx 0 0 0 θ̂Lx

0 ŝx 0 0 θ̂Hx

0 0 ŝxIK1 0 η̂1,x

0 0 0 ŝxIK0 η̂0,x


(2+dη)×(3+dη)

,

D4 =

∇gL(θ̂L, θ̂H , η̂)ᵀ

∇gH(θ̂L, θ̂H , η̂)ᵀ


2×(2+dη)

,

Theorem 5.4. Suppose assumptions 1, 2, and 3 hold, let P∗n be given by definition 5.1 or 5.2, and
{κn}∞n=1 ⊆ R satisfy κn →∞ and κn/

√
n→ 0. Then conditional on {Yi, Di, Zi, Xi}ni=1,

D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn)))

L→ T ′P (G)

in outer probability.
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5.2.3 Confidence sets

Theorems 5.3 and 5.4 make it straightforward to conduct inference. For example, a simple confi-

dence set for the identified set [γL, γH ] is given by

[
γ̂L − ĉ1−α/

√
n, γ̂H + ĉ1−α/

√
n
]

where ĉ1−α is a consistent estimator of the 1 − α quantile of max{T ′P (G)(1),−T ′P (G)(2)}. When

assumptions 1 through 4 hold, let (γ̂L∗, γ̂H∗) = T (P∗n). When assumptions 1 through 3 hold but

assumption 4 is doubtful, let (γ̂L∗, γ̂H∗) = (γ̂L, γ̂H) + 1√
n
D̂4D̂3T̂2,T1(P )(

√
n(T1(P∗n) − T1(Pn))). In

either case, compute

ĉ1−α = inf
{
c ; P

(
max

{√
n(γ̂L∗ − γ̂L),−

√
n(γ̂H∗ − γ̂H)

}
≤ c | {Yi, Di, Zi, Xi}ni=1

)
≥ 1− α

}
through simulation:

1. Compute (γ̂L, γ̂H) = T (Pn) and, if necessary, D̂4, and D̂3.

2. Generate B boostrap samples, {Wi,b}ni=1 for each b = 1, . . . , B according to definition 5.1 or

5.2. For each bootstrap sample b, compute (γ̂L∗b , γ̂H∗b ) as described above.

3. Let ĉ1−α be the 1− α quantile of {max{
√
n(γ̂L∗b − γ̂L),−

√
n(γ̂H∗b − γ̂H)}Bb=1.

Under the further assumption that the cumulative distribution function of max{T ′P (G)(1),−T ′P (G)(2)}

is continuous and strictly increasing at its 1− α quantile,

lim
n→∞

P
(
[γL, γH ] ⊆

[
γ̂L − ĉ1−α/

√
n, γ̂H + ĉ1−α/

√
n
])

= 1− α

Confidence sets for the parameter could be constructed following Imbens & Manski (2004).

6 Simulations

This section explores the finite sample performance of the estimators, with a focus on coverage

rates of confidence sets for the identified set.

For simplicity, the data generating process is one of exogenous treatment with no covariates.

An observation consists of the vector (Y,D), where Y = DY1 + (1 − D)Y0. Treatment status

D ∈ {0, 1} is independent of (Y1, Y0), and satisfies P (D = 1) = 0.5. Potential outcomes follow
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with a Kumaraswamy distribution with parameters ad and bd, having support [0, 1] and cumulative

distribution function

Fd(y) = P (Yd ≤ y) = 1− (1− yad)bd

The parameter of interest is

γ = θ = P (Y1 − Y0 ≤ δ),

This parameter is chosen to facilitate computation of the true identified set. As noted in remark 4.1,

the optimal transport problems involved in characterizing the identified set have simple analytical

expressions. Specifically, the identified set for γ is [γL, γH ], where

γL = sup
y
{F1(y)− F0(y − δ)} , γH = 1 + inf

y
{F1(y)− F0(y − δ)}

These expressions and the closed form cdfs Fd allow the true values of γL and γH to be computed

precisely without simulation.

In each simulation, an i.i.d. sample {Yi, Di}ni=1 is drawn according to the data generating

process described above. The estimators are computed according to equations (20), (29), (30), and

(31):

γ̂L = OTcL(P̂1, P̂0), γ̂H = 1−OTcH (P̂1, P̂0)

where the cost functions are cL(y1, y0) = 1{y1 − y0 < δ} and cH(y1, y0) = 1{y1 − y0 > δ} and

optimal transport is computed as

OTc(P̂1, P̂0) = sup
{ϕi,ψj}i,j

n∑
i=1

ω1,iϕi +
n∑
j=1

ω0,jψj

s.t. ϕi + ψj ≤ c(Yi, Yj) for all 1 ≤ i, j ≤ n

3,000 bootstrap draws are used to compute the confidence set

CI =
[
γ̂L − ĉ1−α/

√
n, γ̂H + ĉ1−α/

√
n
]

with α = 0.05, following the procedures outlined in section 5.2.3.
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The population cumulative distribution functions of Y1 and Y0, as well as their difference, are

displayed in Figure 1.

Figure 1: cdfs and dual objective

As is clear from the right panel, there is a unique and well separated maximum and minimum of

F1(y) − F0(y − δ) that imply population bounds of γL = 0.156 and γH = 0.828. The uniqueness

of these optimizers indicate that T (·) is fully differentiable, and thus the straightforward bootstrap

described by theorem 5.3 consistently estimates the asymptotic distribution.

It is well known that estimators optimizing over sample averages are biased in small samples

(Haile & Tamer, 2003; Kreider & Pepper, 2007; Chernozhukov et al., 2013). Specifically, the

expectation of a sup over a sample average is larger than the sup over its popoulation counterpart

due to convexity of the sup function. This suggests that in small samples γ̂L is biased upward,

and γ̂H biased downward, leading to estimated bounds that are tighter than their population

counterparts. Although theorems 5.2 and 5.3 guarantee correct coverage asymptotically, this finite

sample bias can lead to undercoverage in small samples.

Table 1 reports the empirical bias and standard deviation of the estimator, as well as the

empirical coverage of the confidence set, from 300 simulations.
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Table 1: Simulations, P (Y1 − Y0 ≤ δ)

n
Bias St. Dev. Emp. Coverage

γ̂L γ̂H γ̂L γ̂H CI

100 0.047 -0.051 0.065 0.066 0.900

200 0.031 -0.031 0.049 0.049 0.917

300 0.030 -0.021 0.040 0.040 0.893

The bias is notable in magnitude relative to the standard deviation in these small sample sizes.

Empicial coverage is slightly below the nominal value.

The bootstrap bias-correction found in Efron & Tibshirani (1994) is simple to implement in

the current setting. The finite-sample bias of the lower and upper bounds is given by E[γ̂L] − γL

and E[γ̂H ] − γH respectively. These are estimated by b̂ias
L

= B−1
∑B

b=1 γ̂
L∗
b − γ̂L and b̂ias

H
=

B−1
∑B

b=1 γ̂
H∗
b − γ̂H . The bootstrap bias-corrected estimate of the bounds are given by

γ̂LBC = γ̂L − b̂ias
L
, γ̂HBC = γ̂H − b̂ias

H

The bootstrap bias correction is often found to reduce finite-sample bias in simulations and to offer

a higher order refinement in various settings (Horowitz, 2001; Hahn et al., 2002). In the context of

smooth functions of sample moments, Horowitz (2001) notes that the asymptotic distribution of the

corrected estimator is the same as that of the uncorrected estimator when B increases sufficiently

quickly with n. The boostrap bias-corrected confidence set for the identified set is given by

CIBC =
[
γ̂LBC − ĉ1−α/

√
n, γ̂HBC + ĉ1−α/

√
n
]

Table 2 reports the results from the same 300 simulations using this bias correction.

Table 2: Simulations, P (Y1 − Y0 ≤ δ), w/Bias Correction

n
Bias St. Dev. Emp. Coverage

γ̂LBC γ̂HBC γ̂LBC γ̂HBC CIBC

100 0.021 -0.026 0.071 0.071 0.927

200 0.013 -0.015 0.052 0.051 0.953

300 0.015 -0.007 0.042 0.042 0.957

Empirical bias is approximately halved, and coverage is close to the nominal 95%. Efron & Tib-

26



shirani (1994) warns that the bootstrap bias correction may increase the variance of the estimator,

but in this case the standard deviation increased only marginally.

7 Application: National Supported Work Demonstration

In this section I demonstrate the estimators in revisiting the famous National Supported Work

Demonstration program (LaLonde (1986)). This program was implemented in the 1970s with the

aim of helping socially and economically disadvantaged workers obtain job skills. Those randomly

selected into the program were guaranteed a job lasting six to eighteen months, and frequently met

with a counselor to discuss performance. There is no reported noncompliance, so I interpret the

setting as one of exogenous treatment.

I make use of the “LaLonde” sample studied in Diamond & Sekhon (2013). This sample consists

of male participants and includes 297 treated and 425 control observations. The outcome of interest

is real earnings in 1978. Observed covariates include age, years of education, real earnings in months

13 to 24 prior to randomization, and indicators for whether a participant is a high school dropout,

black, hispanic, or married. Averages and standard deviations of these covariates by treatment

status are reported in table 3:

Table 3: Balance table

base inc. age yrs. educ. HS dropout black hispanic married

control
3672.49 24.45 10.19 0.81 0.80 0.11 0.16

(6521.53) (6.59) (1.62) (0.39) (0.40) (0.32) (0.36)

treated
3571.00 24.63 10.38 0.73 0.80 0.09 0.17

(5773.13) (6.69) (1.82) (0.44) (0.40) (0.29) (0.37)

Note: Standard deviations in parentheses.

In this sample, the average treatment effect on 1978 real earnings is $886. It is natural to ask

whether the policy was more beneficial for those who would have low incomes in 1978 without

treatment. One parameter addressing this is the OLS slope coefficient of regressing treatment

effects on a constant and Y0:

γ =
Cov(Y1 − Y0, Y0)

Var(Y0)
=
EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

EP0 [Y 2
0 ]− (EP0 [Y0])2

.

As described in example 2.3, the sign of this parameter describes who receives larger benefits from
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treatment. Specifically, γ < 0 implies those with below average untreated outcomes tend to see

above average treatment effects.

Discretized versions of baseline income and age are found to be informative covariates. Baseline

income is binned as [0, 0], (0, 4000], or (4000,∞) while age is binned as (16, 23], or (23,∞). X is

the cartesian product of bins.

The point estimates for the bounds are (γ̂L, γ̂H) = (−1.725,−0.003).3 The negative upper

bound point estimates suggests that the treatment was especially beneficial for participants who

would otherwise have incomes below average (for the eligible population). The bias-corrected point

estimates based on 3,000 bootstrap draws are (γ̂LBC , γ̂
H
BC) = (−1.731, 0.041), and the bias-corrected

95% confidence set for the identified set is [−1.956, 0.266]. These suggest that γ may still be zero

or slightly positive once accounting for sample uncertainty.

I also estimate the parameter conditional on each of the covariate values, that is,

γx =
Cov(Y1 − Y0, Y0 | X = x)

Var(Y0 | X = x)

Bias corrected point estimates and confidence intervals for each γx are reported in Table 4.

Table 4: Estimates conditional on covariate values

age base inc. γ̂LBC γ̂HBC CIBC n

(16, 23]

0 -1.97 0.28 [-2.26, 0.56] 140

(0, 4000] -1.74 -0.15 [-1.9, 0.01] 141

(4000, ∞) -1.45 -0.44 [-1.63, -0.27] 90

(23, 55]

0 -2.13 0.81 [-2.65, 1.33] 187

(0, 4000] -1.39 -0.16 [-1.93, 0.38] 56

(4000, ∞) -1.66 0.03 [-2.08, 0.45] 108

It is worth noting the upper bound on the confidence set is negative for young men with baseline

income above $4, 000, and essentially zero for young men with positive income below $4, 000. For

these subpopulations, those who would have had below average incomes in 1978 tended to see above

average benefits from treatment.

3Covariates are found to be informative, especially for the upper bound. Ignoring covariates, the lower bound
point estimate is −1.783 and the upper bound point estimate is 0.190.
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8 Extensions

This section briefly describes a few simple extensions.

8.1 Conditioning on X ∈ A

In many applications parameters conditional on a covariate taking a particular value are of interest.

For example, the share of compliers of a particular demographic benefiting from treatment is

P (Y1 > Y0 | D1 > D0, demographic). Such parameters can be written in the form

γA = g(θA, ηA)

where for a known set A ⊆ X ,

θA ≡ E[c(Y1, Y0) | D1 > D0, X ∈ A], ηA ≡ E[η1(Y1), η0(Y0) | D1 > D0, X ∈ A]

The identified set for γA is straightforward to characterize and estimate. First note that

θA = E[θX | D1 > D0, X ∈ A] =
1

sA

∑
x∈A

sxθx

where sA =
∑

x∈A sx. The proof of theorem 4.1 shows that the sharp identified set for (θx1 , . . . , θxM )

is in fact [θLx1
, θHx1

]× . . .× [θLxM , θ
H
xM

]. It follows that the sharp identified set for θA is [θLA, θ
H
A ], where

θLA =
1

sA

∑
x∈A

sxθ
L
x , θHA =

1

sA

∑
x∈A

sxθ
H
x

and the sharp identified set for γA is [γLA, γ
H
A ] where

γLA = min
t∈[θLA,θ

H
A ]
g(t, ηA), γHA = max

t∈[θLA,θ
H
A ]
g(t, ηA),

Let ŝx, θ̂Lx , and θ̂Hx be as defined in section 5. Let ŝA =
∑

x∈A ŝx and

θ̂LA =
1

ŝA

∑
x∈A

ŝxθ̂
L
x , θ̂H(A) =

1

ŝA

∑
x∈A

ŝxθ̂
H
x

γ̂LA = min
t∈[θ̂LA,θ̂

H
A ]
g(t, η̂A), γ̂HA = max

t∈[θ̂LA,θ̂
H
A ]
g(t, η̂A),
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Under assumptions 1, 2, and 3,
√
n((γ̂LA, γ̂

H
A )− (γLA, γ

H
A ) will converge weakly. With assumption 4

the straightforward bootstrap will consistently estimate its asymptotic distribution.

8.2 Quantiles

Example 2.5 considers the parameter qτ solving

P (Y1 − Y0 ≤ qτ | D1 > D0) = τ

As noted in that example, the sharp identification results for P (Y1 − Y0 ≤ δ | D1 > D0) can be

adapted to characterize the sharp identified set for qτ . First view the bounds on the cumulative

distribution function as functions of δ:

cL,δ(y1, y0) = 1{y1 − y0 < δ}, cH,δ(y1, y0) = 1{y1 − y0 > δ},

θLx (δ) = OTcL,δ(P1|x, P0|x), θHx (δ) = 1−OTcH,δ(P1|x, P0|x)

θL(δ) =
∑
x

sxθ
L
x (δ) θH(δ) =

∑
x

sxθ
H
x (δ)

Let QI,τ denote the sharp identified set for qτ .

Lemma 8.1 (Identification of qτ ). Suppose assumptions 1 and 2 (ii) hold. Then q ∈ QI,τ if and
only if θL(q) ≤ τ ≤ θH(q).

Lemma 8.1 implies that inverting a test of H0 : θL(q) ≤ τ ≤ θH(q) against the alternative

H1 : τ < θL(q) or θH(q) < τ will lead to valid confidence sets for qτ .

Remark 8.1. Consider instead defining qτ to be the closed subset of R given by

qτ = [inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, inf{y ; P (Y1 − Y0 ≤ y) > τ}]

Note that this qτ is the singleton inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, unless P (Y1 − Y0 ≤ ·) is flat
when equal to τ , in which case it equals the τ -level set {y ; P (Y1 − Y0 ≤ y) = τ}. (Compare
Ehm et al. (2016), who define the τ -th quantile equivalently as qτ = [sup{y ; P (Y1 − Y0 ≤ y) <
τ}, sup{y ; P (Y1 − Y0 ≤ y) ≤ τ}].) Let QI,τ denote the identified set of qτ as defined in this
remark. Lemma A.2 in appendix A shows that under assumptions 1 and 2 (ii), q ∈ QI,τ if and only
if θL(q) ≤ τ ≤ θH(q).
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8.3 Multiple treatment arms with exogenous treatment

The results above are easily extended to a setting with multiple treatment arms and exogenous

treatment. Let d ∈ {0, 1, . . . , J}, index the mutually exclusive treatment arms, with d = 0 indicating

control. Let Yd be the potential outcome with treatment d, and Dd equal one if the unit has

treatment d and zero otherwise. The observed outcome is

Y =

J∑
d=0

DdYd

Let D = (D0, D1, . . . , DJ) and assume (Y0, Y1, . . . , YJ) ⊥ D | X. The marginal distributions of

Yd | X = x, denoted Pd|x, are identified with the relation

EPd|x [f(Yd)] = E[f(Yd) | X = x] =
E[f(Y )Dd | X = x]

P (Dd = 1 | X = x)

Let γd = g(θd, ηd) where θd = E[c(Yd, Y0)]. Consider estimating the sharp identified set for

(γ1, . . . γJ). For example, an RCT with two treatment arms may have similar average treatment

effects. The treatment arms may be further distinguished by comparing P (Y1 − Y0 > 0) with

P (Y2 − Y0 > 0), or Cov(Y1 − Y0, Y0) with Cov(Y2 − Y0, Y0).

Let θd,x = E[c(Y1, Y0) | X = x]. The sharp identified set for (θ1,x, . . . , θJ,x) is given by

[θL1,x, θ
H
1,x]× . . .× [θLJ,x, θ

H
J,x]

where θLd,x = θL(Pd|x, P0|x) and θHd,x = θH(Pd|x, P0|x) as in section 4.4 The sharp identified set for θd

is [θLd , θ
H
d ] where θLd =

∑
x sxθ

L
d,x and θHd =

∑
x sxθ

H
d,x, and the sharp identified set for (γ1, . . . γJ) is

[γL1 , γ
H
1 ]× . . .× [γLJ , γ

H
J ]

Sample analogues (γ̂L1 , γ̂
H
1 , . . . , γ̂

L
J , γ̂

H
J ) can be formed just as in section 5. Under natural adjust-

ments to assumptions 2, 3, and 4, the same arguments work to show

√
n((γ̂L1 , γ̂

H
1 , . . . , γ̂

L
J , γ̂

H
J )− (γL1 , γ

H
1 , . . . , γ

L
J , γ

H
J ))

is asymptotically Gaussian and the bootstrap consistently estimates its asymptotic distribution.

4This follows from existing results and the gluing lemma, found in Villani (2009) (pp. 11-12).
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A Appendix: identification

Following Kitagawa (2015), let T denote the “type” of a unit:

T =



a, always-taker, if (D1, D0) = (1, 1)

c, complier, if (D1, D0) = (1, 0)

n, never-taker, if (D1, D0) = (0, 0)

df, defier, if (D1, D0) = (0, 1)

(41)

Note that the primitives (Y1, Y0, D1, D0, Z,X) are equivalent to (Y1, Y0, T, Z,X).

Lemma A.1 (Identification of moments). Suppose assumptions 1 and 2 hold. Then the sharp
identified set for θ is [θL, θH ].

Proof. Let T be as defined in (41), and note that the primitives of the model (Y1, Y0, D1, D0, Z,X)
are equivalent to (Y1, Y0, T, Z,X). Moreover, the event D1 > D0 is the event T = c; thus Pd|x is
the distribution of Yd | T = c,X = x.

In steps:

1. The identified set for (P1,0|x1
, . . . , P1,0|xM ), the conditional distributions of (Y1, Y0) | T =

c,X = x for each x ∈ X = {x1, . . . , xM}, is Π(P1|x1
, P0|x1

)× . . .×Π(P1|xM , P0|xM ).

That (P1,0|x1
, . . . , P1,0|xM ) ∈ Π(P1|x1

, P0|x1
)× . . .×Π(P1|xM , P0|xM ) is immediate. To see that

any element of Π(P1|x1
, P0|x1

) × . . . × Π(P1|xM , P0|xM ) is possible given the assumptions and
distribution of the observables (Y,D,Z,X), fix a distribution of the observables generated by
a distribution of the primitives consistent with the assumptions. Note that the distribution of
observables is summarized by P (D = d, Z = z,X = x) for each (d, z, x) and the conditional
distributions

Y | D = d, Z = z,X = x

Use this observation and the claims of lemma A.4 to see that any two distributions of the
primitives (Y1, Y0, T, Z,X) (consistent with the assumptions), sharing the same distribution
of (T,Z,X), and the same marginal, conditional distributions for

Y1 | T = a,X = x Y0 | T = n,X = x

Y1 | T = c,X = x, Y0 | T = c,X = x

will produce this distribution of observables. Thus, replacing (P1,0|x1
, . . . , P1,0|xM ) from the

distribution of primitives with any

(πx1 , . . . , πxM ) ∈ Π(P1|x1
, P0|x1

)× . . .×Π(P1|xM , P0|xM )

will generate the same observed distribution of (Y,D,Z,X), without violating assumption 1
or 2. The claim follows.
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2. The identified set for (θx1 , . . . , θxM ) ∈ RM is [θLx1
, θHx1

]× . . .× [θLxM , θ
H
xM

].

Recall that θx = E[c(Y1, Y0) | X = x], and let ΘI,x denote its identified set. Note that the
previous step implies

ΘI,x =
{
t ∈ R ; t = Eπx [c(Y1, Y0)] for some πx ∈ Π(P1|x, P0|x)

}
Π(P1|x, P0|x) is convex. Notice that for any λ ∈ (0, 1) and π1

x, π
0
x ∈ Π(P1|x, P0|x), Eλπ1

x+(1−λ)π0
x
[c(Y1, Y0)] =

λEπ1
x
[c(Y1, Y0)] + (1− λ)Eπ0

x
[c(Y1, Y0)]. Together these imply ΘI,x is convex.

It suffices to show that for any x, ΘI,x = [θLx , θ
H
x ] There are two cases:

(i) If assumption 2 (i) holds, then for each x,

θLx = OTc(P1|x, P0|x) = inf
πx∈Π(P1|x,P0|x)

Eπx [c(Y1, Y0)]

θHx = −OT−c(P1|x, P0|x) = sup
πx∈Π(P1|x,P0|x)

Eπx [c(Y1, Y0)]

Since c is continuous, lemma E.1 implies the optimal transport problems are attained,
say by πLx and πHx respectively. It follows that θLx , θ

H
x ∈ ΘI,x, and it is clear from their

definitions that they bound ΘI,x. Since ΘI,x is convex, it follows that ΘI,x = [θLx , θ
H
x ].

(ii) If Assumption 2 (ii) holds, then

cL(y1, y0) = 1{y1 − y0 < δ}, cH(y1, y0) = 1{y1 − y0 > δ},
θLx = OTcL(P1|x, P0|x), θHx = 1−OTcH (P1|x, P0|x)

Let πLx , π
H
x ∈ Π(P1|x, P0|x) be such that θLx = EπLx [1{Y1 − Y0 < δ}] = PπLx (Y1 − Y0 < δ)

and θHx = 1 − EπHx [1{Y1 − Y0 > δ}] = PπHx (Y1 − Y0 ≤ δ). Notice that θHx ∈ ΘI,x.
Furthermore, 1{y1 − y0 < δ} ≤ 1{y1 − y0 ≤ δ} implies

θLx = inf
πx∈Π(P1|x,P0|x)

Eπx [1{Y1 − Y0 < δ}] ≤ inf
πx∈Π(P1|x,P0|x)

Eπx [1{Y1 − Y0 ≤ δ}]

and thus θLx is a lower bound for ΘI,x. Since ΘI,x is convex, it suffices to show that
θLx ∈ ΘI,x.

Corollary E.15 implies that θLx = PπLx (Y1−Y0 < δ) = supy
{
F1|x(y)− F0|x(y − δ)

}
. More-

over, Villani (2009) theorem 5.10 part (iii) implies the dual problem supy
{
F1|x(y)− F0|x(y − δ)

}
is attained as well, say by y∗. Thus∫

1{y1−y0 ≤ δ}dπLx (y1, y0) =

∫
1{y1 ≤ y∗}dP1|x(y1)−

∫
1{y0 ≤ y∗−δ}dP0|x(y0) (42)

Next, notice that

1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ} ≤ 1{y1 − y0 < δ} (43)

which holds for all (y1, y0), must hold with equality πLx -almost surely. Indeed, let N be
the set where the inequality in (43) is strict and suppose N is πLx -non-negligible. Since
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πLx ∈ Π(P1|x, P0|x),∫
1{y1 ≤ y∗}dP1|x(y1)−

∫
1{y0 ≤ y∗ − δ}dP0|x(y0) =

∫
1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0)

=

∫
N
1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0) +

∫
Nc

1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0)

<

∫
N
1{y1 − y0 < δ}dπLx (y1, y0) +

∫
Nc

1{y1 − y0 < δ}dπLx (y1, y0)

=

∫
1{y1 − y0 ≤ δ}dπLx (y1, y0)

contradicts (42). This implies that πLx concentrates on

{(y1, y0) ; y1 ≤ y∗, y0 > y∗ − δ, y1 − y0 < δ}︸ ︷︷ ︸
both sides of (43) equal 1

∪{(y1, y0) ; y1 > y∗, y0 > y∗ − δ, y1 − y0 ≥ δ}︸ ︷︷ ︸
both sides of (43) equal 0

∪{(y1, y0) ; y1 ≤ y∗, y0 ≤ y∗ − δ, y1 − y0 ≥ δ}︸ ︷︷ ︸
both sides of (43) equal 0

Notice the only point in the set {(y1, y0) ; y1 − y0 = δ} where πLx could put positive
mass is the point (y1, y0) = (y∗, y∗ − δ). But since P1|x has a continuous CDF,

0 ≤ πLx ({(y∗, y∗ − δ)}) ≤ πLx ({y∗} × Y0) = P1|x({y∗}) = 0

Thus PπLx (Y1−Y0 = δ) = 0, and so PπLx (Y1−Y0 ≤ δ) = PπLx (Y1−Y0 < δ) = θL(x). Thus

θLx ∈ ΘI,x, and hence ΘI,x = [θL(x), θH(x)].

Therefore the identified set for θx is [θLx , θ
H
x ]. It follows from this and step one above that the

identified set (θx1 , . . . , θxM ) is [θLx1
, θHx1

]× . . .× [θLxM , θ
H
xM

].

3. Recall that θ = E[c(Y1, Y0)] = E[E[c(Y1, Y0) | X]] =
∑

x sxθx. Since sx = P (X = x | T = c)
is point identified for each x, it follows from step two above that the identified set for θ is
[θL, θH ] where

θL =
∑
x

sxθ
L
x , θH =

∑
x

sxθ
H
x

This concludes the proof.

Theorem 4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3 are
satisfied. Then the sharp identified set for γ is [γL, γH ].

Proof. Lemma A.1 shows that under assumptions 1 and 2, the sharp identified set for θ is [θL, θH ].
Let ΓI be the identified set for γ, and note that

ΓI = {γ ∈ R ; γ = g(t, η) for some t ∈ [θL, θH ]}

Assumption 2 implies c is bounded; under assumption 2 (i) the continuous c : Y × Y → R
takes a maximum and minimum on the compact set Y ×Y, while under assumption 2 (ii) the cost
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function only takes values 0 or 1. It follows that θL and θH are finite and thus [θL, θH ] is compact.
Assumption 3 (ii) is that g(·, η) is continuous, and thus the extreme value theorem implies

γL = inft∈[θL,θH ] g(t, η) and γH = supt∈[θL,θH ] g(t, η) are both elements of ΓI . The intermediate

value theorem then implies ΓI = [γL, γH ].

Lemma 8.1 (Identification of qτ ). Suppose assumptions 1 and 2 (ii) hold. Then q ∈ QI,τ if and
only if θL(q) ≤ τ ≤ θH(q).

Proof. By definition, q ∈ ΓI,τ if and only if there exists a distribution of the primitives, π, consistent
with the observed distribution, such that Pπ(Y1−Y0 ≤ q) = τ . Lemma A.1 shows that θL(q) ≤ τ ≤
θH(q) if and only if there exists a distribution of the primitives, π, such that θL(q) ≤ τ ≤ θH(q).
This concludees the proof.

Lemma A.2 (Identification: τ -th quantile). Let qτ be defined as

qτ = [inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, inf{y ; P (Y1 − Y0 ≤ y) > τ}]

Suppose assumption 1 and 2 (ii) hold, and let QI,τ denote the identified set of qτ defined above.
Then q ∈ QI,τ if and only if θL(q) ≤ τ ≤ θH(q).

Proof. Suppose θL(q) ≤ τ ≤ θH(q). Lemma A.1 implies there exists a distribution π of the primi-
tives consistent with assumption 2 (ii) such that Pπ(Y1−Y0 ≤ q) = τ . Thus q ∈ [inf{y ; Pπ(Y1−Y0 ≤
y) ≥ τ}, inf{y ; Pπ(Y1 − Y0 ≤ y) > τ}] and hence q ∈ QI,τ .

Before showing the other direction, we next show that assumption 2 (ii) implies θL(δ) is con-
tinuous. Specifically, apply corollary E.15 to find θLx (δ) = supy{F1|x(y)− F0|x(y − δ)}. So for any
δ, δ′,

θLx (δ)− θLx (δ′) = sup
y
{F1|x(y)− F0|x(y − δ)} − sup

y
{F1|x(y)− F0|x(y − δ′)}

≤ sup
y

{
F0|x(y − δ′)− F0|x(y − δ)

}
≤ sup

y

∣∣F0|x(y − δ′)− F0|x(y − δ)
∣∣

and thus |θLx (δ)− θLx (δ′)| ≤ supy
∣∣F0|x(y − δ′)− F0|x(y − δ)

∣∣. Recall that any continuous CDF is in
fact uniformly continuous, and so F0|x is in fact uniformly continuous. Let ε > 0, choose η > 0
such that for any y, y′ ∈ R with |y − y′| < η, one has |F0|x(y)− F0|x(y′)| < ε/2, and notice that

|δ − δ′| < η =⇒ sup
y

∣∣F0|x(y − δ′)− F0|x(y − δ)
∣∣ ≤ ε/2 < ε

This shows θLx (δ) is continuous, and so θL(δ) =
∑

x sxθ
L
x is continuous.

Return to showing the other direction, through the contrapositive. Suppose it is not the case
that θL(q) ≤ τ ≤ θH(q). There are two possibilities:

1. Suppose θH(q) < τ . Then there is no distribution π of the primitives such that Pπ(Y1−Y0 ≤
q) ≥ τ , hence there is no distribution where q ∈ [inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, inf{y ; P (Y1 −
Y0 ≤ y) > τ}] and thus q 6∈ QI,τ .
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2. Suppose τ < θL(q). If one further supposes that q ∈ QI,τ , then θL(·) would have a jump
discontinuity at q, contradicting the continuity shown above.

Specifically, if τ < θL(q) and q ∈ QI,τ , then there exists a distribution π of the primitives such
that Pπ(Y1−Y0 ≤ q) > τ and q ∈ [inf{y ; Pπ(Y1−Y0 ≤ y) ≥ τ}, inf{y ; Pπ(Y1−Y0 ≤ y) > τ}],
implying that Pπ(Y1 − Y0 ≤ ·) jumps at q from below τ to above θL(q):

lim
ε→0

Pπ(Y1 − Y0 ≤ q − ε) < τ < θL(q) ≤ Pπ(Y1 − Y0 ≤ q)

This jump discontinuity at q is at least of size ε = θL(q)− τ > 0. But then θL(·) would have
a jump discontinuity of at least size ε at q as well, a contradiction of the continuity of θL(·)
shown above.

Thus if τ < θL(q), then q 6∈ QI,τ .

In either case, q 6∈ QI,τ . This completes the proof.

A.1 Additional identification lemmas

The lemmas below contain results well known in the literature. They are included here with proofs

for completeness.

Lemma A.3. Let P1 be any distribution and P0 be degenerate at ỹ0 ∈ R. Then the only possible
coupling of P1 and P0 is characterized by the cumulative distribution function

P (Y1 ≤ y1, Y0 ≤ y0) =

{
P (Y1 ≤ y1) if y0 ≥ ỹ0

0 if y0 < ỹ0

Proof. First suppose y0 < ỹ0. Then 0 ≤ P (Y1 ≤ y1, Y0 ≤ y0) ≤ P (Y0 ≤ y0) = 0.
Next suppose y0 ≥ ỹ0. Then 1 ≥ P ({Y1 ≤ y1} ∪ {Y0 ≤ y0}) ≥ P (Y0 ≤ y0) = 1 implies that

P (Y1 ≤ y1, Y0 ≤ y0) = P (Y1 ≤ y1) + P (Y0 ≤ y0)︸ ︷︷ ︸
=1

−P ({Y1 ≤ y1} ∪ {Y0 ≤ y0})︸ ︷︷ ︸
=1

= P (Y1 ≤ y1)

which completes the proof.

Lemma A.4 below summarizes the empirical content of the model described in assumption 1.

In particular, it implies that any two distributions of the primitives consistent with assumption 1

that share the same marginal distribution of (T,Z,X) and marginal, conditional distributions of

Y1 | T = a,X = x Y0 | T = n,X = x

Y1 | T = c,X = x, Y0 | T = c,X = x
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will produce the same distribution of observables.

Lemma A.4. Suppose assumpion 1 holds. Then

P (D = 1 | Z = 0, X = x) = P (T = a | X = x)

P (D = 0 | Z = 1, X = x) = P (T = n | X = x)

P (D = 1 | Z = 1, X = x) = P (T ∈ {a, c} | X = x)

P (D = 0 | Z = 0, X = x) = P (T ∈ {c, n} | X = x)

and for any integrable function f ,

E[f(Y ) | D = 1, Z = 1, X = x] = E[f(Y1) | T ∈ {a, c}, X = x]

E[f(Y ) | D = 0, Z = 0, X = x] = E[f(Y0) | T ∈ {c, n}, X = x]

Furthermore,

if P (D = 1 | Z = 0, X = x) > 0, then E[f(Y ) | D = 1, Z = 0, X = x] = E[f(Y1) | T = a,X = x]

if P (D = 0 | Z = 1, X = x) > 0, then E[f(Y ) | D = 0, Z = 1, X = x] = E[f(Y0) | T = n,X = x]

Proof. Assumption 1 (ii) implies 1{D1 = 0, D0 = 1} = 0. The definition of T in (41) then implies

1{D0 = 1} = 1{D1 = 1, D0 = 1}+((((((((((
1{D1 = 0, D0 = 1} = 1{T = a}

1{D1 = 0} = 1{D1 = 0, D0 = 0}+((((((((((
1{D1 = 0, D0 = 1} = 1{T = n}

1{D1 = 1} = 1{D1 = 1, D0 = 1}+ 1{D1 = 1, D0 = 0} = 1{T ∈ {a, c}}
1{D0 = 0} = 1{D1 = 1, D0 = 0}+ 1{D1 = 0, D0 = 0} = 1{T ∈ {c, n}}

These observations, equation (2), and assumption 1 (i) imply

P (D = 1 | Z = 0, X = x) = P (D0 = 1 | X = x) = P (T = a | X = x),

P (D = 0 | Z = 1, X = x) = P (D1 = 0 | X = x) = P (T = n | X = x),

P (D = 1 | Z = 1, X = x) = P (D1 = 1 | X = x) = P (T ∈ {a, c} | X = x), and

P (D = 0 | Z = 0, X = x) = P (D0 = 0 | X = x) = P (T ∈ {c, n} | X = x)

Note the first two equalities can be summarized as P (D = d | Z = z,X = x) = P (Dz = d | X = x).
Next, let f : R → R be integrable. Assumption 1 (i) and equations (1) and (2) imply that for

any (d, z, x),

P (D = d | Z = z,X = x)E[f(Y ) | D = d, Z = z,X = x]

= P (Dz = d | X = x)E[f(Yd) | Dz = d,X = x]

and since P (D = d | Z = z,X = x) = P (Dz = d | X = x), this implies

0 = P (D = d | Z = z,X = x)
(
E[f(Y ) | D = d, Z = z,X = x]− E[f(Yd) | Dz = d,X = x]

)
(44)
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Assumption 1 (iii) implies

P (D = 1 | Z = 1, X = x) = P (T ∈ {a, c} | X = x) ≥ P (T = c | X = x) > 0

P (D = 0 | Z = 0, X = x) = P (T ∈ {c, n} | X = x) ≥ P (T = c | X = x) > 0

Use strict positivity of P (D = 1 | Z = 1, X = x) and P (D = 0 | Z = 0, X = x) to see that

E[f(Y ) | D = 1, Z = 1, X = x] = E[f(Y1) | D1 = 1, X = x] = E[f(Y1) | T ∈ {a, c}, X = x]

E[f(Y ) | D = 0, Z = 0, X = x] = E[f(Y0) | D0 = 0, X = x] = E[f(Y0) | T ∈ {c, n}, X = x]

Similarly, (44) implies

if P (D = 1 | Z = 0, X = x) > 0, then E[f(Y ) | D = 1, Z = 0, X = x] = E[f(Y1) | T = a,X = x]

if P (D = 0 | Z = 1, X = x) > 0, then E[f(Y ) | D = 0, Z = 1, X = x] = E[f(Y0) | T = n,X = x]

this concludes the proof.

Lemma 2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distributions of Yd
conditional on D1 > D0 and X = x, denoted Pd|x, are identified by

EPd|x [f(Yd)] ≡ E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)
(4)

for any integrable function f . Furthermore, the distribution of X conditional on D1 > D0 is
identified by

sx ≡ P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

(5)

Proof. First notice that using T as defined in (41),

E[f(Yd) | D1 > D0, X = x] = E[f(Yd) | T = c,X = x] =
E[f(Yd)1{T = c} | X = x]

P (T = c | X = x)
(45)

Now notice that

D1 −D0 = (1−D0)− (1−D1) = 1{Dd = d} − 1{D1−d = d}

for either d ∈ {1, 0}. Monotonicity (assumption 1 (ii)) implies that this is an indicator for T = c:

D1 −D0 = 1{D1 = 1, D0 = 0} = 1{T = c}
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So,

E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

= E[f(Yd)1{Dd = d} | X = x]− E[f(Yd)1{D1−d = d} | X = x]

= E[f(Yd)(1{Dd = d} − 1{D1−d = d}) | X = x]

= E[f(Yd)1{T = c} | X = x] (46)

Lemma A.4 shows that

P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)

= P (T ∈ {a, c} | X = x)− P (T = a | X = x) = P (T = c | X = x)

and similarly,

P (D = 0 | Z = 0, X = x)− P (D = 0 | Z = 1, X = x)

= P (T ∈ {c, n} | X = x)− P (T = n | X = x) = P (T = c | X = x)

Thus for either d ∈ {1, 0},

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x) = P (T = c | X = x). (47)

It follows from (45), (46), and (47) that

EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | X = x, Z = d]− E[f(Y )1{D = d} | X = x, Z = 1− d]

P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)
,

and from (47) that

sx = P (X = x | D1 > D0) = P (X = x | T = c) =
P (T = c | X = x)P (X = x)∑
x′ P (T = c | X = x′)P (X = x′)

=
[P (D = 1 | X = x, Z = 1)− P (D = 1 | X = x, Z = 0)]P (X = x)∑
x′ [P (D = 1 | X = x′, Z = 1)− P (D = 1 | X = x′, Z = 0)]P (X = x′)

.

This concludes the proof.
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B Appendix: properties of optimal transport

Suppose that strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0) (48)

for sets of universally bounded functions Fc ⊆ L1(P1) and Fcc ⊆ L1(P0). See lemmas E.9 and

E.13 for examples.5 Then for suitable sets F1 and F0 with Fc ⊆ F1 and Fcc ⊆ F0, the map

OTc(P1, P0) = infπ∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) can be viewed as

OTc : `∞(F1)× `∞(F0)→ R, OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ) (49)

where Pd(f) =
∫
f(yd)dPd(yd) = EPd [f(Yd)].

The functional in (49) is defined over the familiar Banach space `∞(F1)× `∞(F0). This makes

it straightforward to show that optimal transport, as a functional from this space to R, has certain

desirable properties.

B.1 Continuity

Lemma B.1 (Optimal transport is uniformly continuous). Suppose that for some universally
bounded Fc ⊆ L1(P1) and Fcc ⊆ L1(P0), (48) holds. Then the optimal transport functional, given
by (49), is uniformly continuous.

Proof. Define

S : `∞(F1)× `∞(F0)→ `∞(F1 ×F0), S(H1, H0)(ϕ,ψ) = H1(ϕ) +H0(ψ)

Ξc : `∞(F1 ×F0)→ R, Ξc[G] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

G(ϕ,ψ)

5 Fc and Fcc are typically found with the following steps:

(i) Start with a known strong duality result; for some Φcs ⊆ Φc,

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φcs

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0)

(ii) Compute Fc(Φcs) and Fcc (Φcs) defined by (84).

(iii) Notice that Fc(Φcs) ⊆ Fc and Fcc (Φcs) ⊆ Fcc for known and easy to study sets Fc, Fcc

Lemma E.7 and remark E.2 are useful to ensure Fc and Fcc are universally bounded.
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and notice that OTc(H1, H0) = Ξc(S(H1, H0)). Since s : R2 → R given by s(h1, h2) = h1 + h2 is
uniformly continuous, we have that S is uniformly continuous (see lemma F.1). Lemma F.3 shows
that Ξc is uniformly continuous. The composition of uniformly continuous functions is uniformly
continuous, implying OTc is uniformly continuous. This completes the proof.

B.2 Directional Differentiability

The optimal transport functional given by (49) is Hadamard directionally differentiable.6 The

formal result, stated below, requires that Fc and Fcc each be equipped with a semimetric. The

semimetrics chosen must be such that P1 ∈ `∞(Fc) and P0 ∈ `∞(Fcc ) are continuous and the

product space Fc ×Fcc and its subset Φc ∩ (Fc ×Fcc ) are compact.

The setting suggests a very convenient semimetric. Let P be the distribution of an observation,

i.e. (Y,D,Z,X) ∼ P . Note that under assumption 1, the distributions Pd|x are dominated by P

with bounded densities
dPd|x
dP . Specifically, recall that

EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

Let 1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z}, pd,x,z = P (D = d,X = x, Z = z), and px,z =

P (X = x, Z = z). Observe that

E[f(Yd) | D1 > D0, X = x] = E

[
f(Y )

1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d
pd,x,d/px,d − pd,x,1−d/px,1−d

]
= E

[
f(Y )E

[
1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d
| Y
]]

reveals the densities to be
dPd|x
dP (Y ) = E

[
1d,x,d(D,X,Z)/px,d−1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d−pd,x,1−d/px,1−d | Y
]
.

We now drop the subscript x for the remainder of this appendix. Because P dominates both

6Recall the definition, found in Fang & Santos (2019): let D, E be Banach spaces (complete, normed, vector

spaces), and φ : Dφ ⊆ D→ E. φ is Hadamard directionally differentiable at x0 ∈ Dφ tangentially to DT ⊆ D if

there exists a continuous map φ′x0 : DT → E such that

lim
n→∞

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0(h)

∥∥∥∥
E

= 0

for all sequences {hn}∞n=1 ⊆ D and {tn}∞n=1 ⊆ R+ such that hn → h ∈ DT and tn ↓ 0 as n→∞, and x0 + tnhn ∈ Dφ

for all n.

45



P1 and P0 with bounded densities, the L2,P semimetric works very well:

L2,P (f1, f2) =
√
P ((f1 − f2)2) =

√
EP [(f1(Y )− f2(Y ))2] (50)

Equip the product space F1 ×F0 with the product semimetric:

L2((f1, g1), (f2, g2)) =
√
L2,P (f1, f2)2 + L2,P (g1, g2)2 (51)

To apply the L2,P semimetric, each f ∈ F1 and f ∈ F0 are defined on whole domain Y.

Lemma B.2 (Hadamard directional differentiability of optimal transport). Let c : Y × Y → R be
lower semicontinuous, F1,F0 be sets of measurable functions mapping Y to R, and Fc ⊆ F1 and
Fcc ⊆ F0 be universally bounded subsets. Suppose that

1. Strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0),

2. P dominates P1 and P0 with bounded densities,

3. Fd is P -Donsker and supf∈Fd |P (f)| <∞ for each d = 1, 0, and

4. (F1 ×F0, L2) and the subset

Φc ∩ (Fc ×Fcc ) = {(ϕ,ψ) ∈ Fc ×Fcc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

are complete.

Then OTc : `∞(F1)× `∞(F0)→ R defined by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

is Hadamard directionally differentiable at (P1, P0) tangentially to

DTan = C(F1, L2,P )× C(F0, L2,P ). (52)

The set of maximizers Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is nonempty, and the
derivative OT ′c,(P1,P0) : DTan → R is given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Proof. For legibility, the proof is broken down into four steps:
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1. Define

S : `∞(F1)× `∞(F0)→ `∞(F1 ×F0), S(H1, H0)(ϕ,ψ) = H1(ϕ) +H0(ψ)

Ξc : `∞(F1 ×F0)→ R, Ξc[G] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

G(ϕ,ψ)

and notice that OTc(H1, H0) = Ξc(S(H1, H0)). This suggests application of the chain rule.

2. S is linear and continuous at every point of `∞(F1) × `∞(F0), which implies it is (fully)
Hadamard differentiable at any (H1, H0) ∈ `∞(F1)×`∞(F0) tangentially to `∞(F1)×`∞(F0),
and is its own derivative. Indeed, for any (H1n, H0n)→ (H1, H0) ∈ `∞(F1)× `∞(F0) and any
tn ↓ 0,

lim
n→∞

∥∥∥∥S((H1, H0) + tn(H1n, H0n))− S(H1, H0)

tn
− S(H1, H0)

∥∥∥∥
Fc×Fcc

= lim
n→∞

‖S(H1n, H0n)− S(H1, H0)‖Fc×Fcc = 0

3. Consider Ξc. Verify the conditions of lemma F.9:

(a) (F1 ×F0, L2) and the subset Φc ∩ (Fc ×Fcc ) are compact.

First recall that a subset of semimetric space is compact if and only if it is totally
bounded and complete.7 Completeness of both sets is assumed, so it suffices to show
they are totally bounded. Since Φc ∩ (Fc×Fcc ) is a subset of F1×F0, it suffices to show
the latter set is totally bounded.

Using the assumption that Fd is P -Donsker and supf∈Fd |P (f)| < ∞, we have that
supϕ∈Fc |P (ϕ)| < ∞ and (Fd, L2,P ) is totally bounded (see van der Vaart & Well-
ner (1997) problem 2.1.2.). It follows that the product space (F1 × F0, L2) is totally
bounded.8

(b) S(P1, P0) ∈ C(F1 ×F0, L2).

Notice that

|P1(f1)− P1(f2)| ≤ P1(|f1 − f2|) ≤
√
P1((f1 − f2)2) = L2,P1(f1, f2)

where the second inequality is an applications of Jensen’s inequality. This implies P1 ∈
C(F1, L2,P1). Moreover, since P1 � P and dP1

dP ≤ K1 <∞ for some K1 ∈ R,

L2,P1(f1, f2) =

(∫
(f1 − f2)2dP1

dP
dP

)1/2

≤ K1/2
1

(∫
(f1 − f2)2dP

)1/2

= K
1/2
1 L2,P (f1, f2)

shows that C(F1, L2,P1) ⊆ C(F1, L2,P ) and so P1 ∈ C(F1, L2,P ). A similar argument
shows P0 ∈ C(F0, L2,P ).

7See van der Vaart & Wellner (1997), footnote on p. 17.
8For ε > 0, let (f1, . . . , fK) be the centers of L2,P -balls of radius ε/

√
2 that cover F1, and (g1, . . . , gM ) be the

center of L2,P -balls of radius ε/
√

2 that cover F0. Then for any (f, g) ∈ F1 × F0, there exists fk and gm such that
L2,P (f, fk) < ε/

√
2 and L2,P (g, gm) < ε/

√
2, and so

L2((f, g), (fk, gm) =
√
L2,P (f, fk)2 + L2,P (g, gm)2 <

√
(ε/
√

2)2 + (ε/
√

2)2 = ε

and thus the KM balls in (F1 ×F0) of radius ε centered at (fk, gm) for some k,m cover F1 ×F0.
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Use the inequalities above to see that

|S(P1, P0)(f1, g1)− S(P1, P0)(f2, g2)| = |P1(f1)− P1(f2) + P0(g1)− P0(g2)|

≤ L2,P1(f1, f2) + L2,P0(g1, g2) ≤ K1/2
1 L2,P (f1, f2) +K

1/2
0 L2,P (ψ1, ψ2)

≤ 2 max{K1/2
1 ,K

1/2
0 }max{L2,P (f1, f2), L2,P (g1, g2)}

= 2 max{K1/2
1 ,K

1/2
0 }

√
max{L2,P (f1, f2)2, L2,P (g1, g2)2}

≤ 2 max{K1/2
1 ,K

1/2
0 }

√
L2,P (f1, f2)2 + L2,P (g1, g2)2

= 2 max{K1/2
1 ,K

1/2
0 }L2((f1, g1), (f2, g2))

hence L2((f1, g1), (f2, g2)) < ε/(2 max{K1/2
1 ,K

1/2
0 }) implies

|S(P1, P0)(f1, g1)− S(P1, P0)(f2, g2)| < ε

and therefore S(P1, P0) ∈ C(F1 ×F0, L2).

Lemma F.9 shows that Ξc is Hadamard directionally differentiable at S(P1, P0) tangentially
to C(F1 ×F0, L2), with derivative

Ξ′c,S(P1,P0) : C(F1 ×F0, L2)→ R, Ξ′c,S(P1,P0)(H) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H(ϕ,ψ)

where Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is nonempty, because P1 + P0 =
S(P1, P0) is continuous and Φc ∩ (Fc ×Fcc ) is compact.

4. Now consider the tangent spaces to ensure the composition of the derivatives is well de-
fined. Observe that if (H1, H0) ∈ C(F1, L2,P ) × C(F0, L2,P ) then S(H1, H0) = H1 + H0 ∈
C(F1 × F0, L2).9 It follows from the chain rule (lemma F.4) that OTc is Hadamard direc-
tionally differentiable at (P1, P0) tangentially to C(F1, L2,P ) × C(F0, L2,P ) with derivative
OTc : C(F1, L2,P )× C(F0, L2,P )→ R given by

OT ′c,(P1,P0)(H1, H0) = Ξ′c,S(P1,P0)(S
′
(P1,P0)(H1, H0)) = sup

(ϕ,ψ)∈Ψc(P1,P0)
H1(ϕ) +H0(ψ)

B.3 Full differentiability

The property distinguishing directional from full differentiability on a subspace is linearity of the

derivative (Fang & Santos (2019), proposition 2.1). In the case of optimal transport, the derivative

9Fix (f, g) ∈ F1 × F0 and let δ1 > 0 and δ0 > 0 be such that L2,P1(f, f̃) < δ1 implies H1(f, f̃) < ε/2 and
L2,P0(g, g̃) < δ0 implies H0(g, g̃) < ε/2. The inequality

L2,P (f, f̃) + L2,P (g, g̃) ≤ 2 max{L2,P (f, f̃), L2,P (g, g̃)}

= 2

√
max{L2,P (f, f̃)2, L2,P (g, g̃)2} = 2L2((f, g), (f̃ , g̃))

implies that if L2((f, g), (f̃ , g̃)) < min{δ1, δ2}/2 then |S(H1, H0)(f, g)−S(H1, H0)(f̃ , g̃)| ≤ |H1(f)−H1(f̃)|+ |H0(g)−
H0(g̃)| < ε.
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found in lemma B.2 is linear on a large subspace of the tangent space when the solution to the

dual problem is suitably unique. When it holds, this is sufficient for simpler bootstrap procedures

to work for inference.

The dual solutions

(ϕ,ψ) ∈ Ψc(P1, P0) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

are referred to as Kantorovich potentials. Notice that for any s ∈ R,

P1(ϕ+ s) + P0(ψ − s) = P1(ϕ) + P0(ψ)

shows the most one can hope for is uniqueness up to a constant; if (ϕ,ψ) ∈ Ψc(P1, P0), then

(ϕ+ s, ψ− s) ∈ Ψc(P1, P0) as well.10 It is well known in the optimal transport literature that when

the distributions P1, P0 have full support on a convex, compact subset of R and c is differentiable,

the Kantorovich potential is indeed unique in this way on the supports of P1 and P0.

Lemma B.3. Suppose that

1. c(y1, y0) is continuously differentiable.

2. Pd has compact support Yd = [y`d, y
u
d ] ⊆ R, and

Let Fc and Fcc be defined by (14) and (15) respectively, and

Ψc(P1, P0) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

Then for any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), there exists s ∈ R such that for all (y1, y0) ∈ Y1 × Y0

ϕ1(y1)− ϕ2(y1) = s, ψ1(y0)− ψ2(y0) = −s

Proof. The proof is quite similar to that of Santambrogio (2015) proposition 7.18.
Let (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0). For k = 1, 2, ϕk and ψk (being elements of Fc and Fcc

respectively) are L-Lipschitz and hence absolutely continuous. This implies all four functions are
differentiable Lebesgue-almost everywhere, and that for any (y1, y0) ∈ Y1 × Y0,

ϕk(y1) = ϕk(y
`
1) +

∫ y1

y`1

ϕ′k(y)dy ψk(y0) = ψk(y
`
0) +

∫ y0

y`0

ψ′k(y)dy

Notice that the subset of Y1 where both ϕ1 and ϕ2 are differentiable also has full Lebesgue measure.
It suffices to show that ϕ′1(y1) = ϕ′2(y1) on this set (and ψ′1(y0) = ψ′2(y0) on the subset of Y0 where

10See Staudt et al. (2022) for extended discussion on uniqueness of Kantorovich potentials.
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both ψ1 and ψ2 are differentiable, which also has full Lebesgue measure), from which it will follow
that for any (y1, y0) ∈ Y1 × Y0,

ϕ1(y1)− ϕ2(y1) = ϕ1(y`1)− ϕ2(y`1) +

∫ y1

y`1

(ϕ′1(y)− ϕ′2(y))dy = ϕ1(y`1)− ϕ2(y`1)︸ ︷︷ ︸
:=sϕ

ψ1(y0)− ψ2(y0) = ψ1(y`)− ψ2(y`) +

∫ y0

y`0

(ψ′1(y)− ψ′2(y))dy = ψ1(y`0)− ψ2(y`0)︸ ︷︷ ︸
:=sψ

Finally, observe that P1(ϕ2) + P0(ϕ2) = P1(ϕ1) + P0(ψ1) = P1(ϕ2 + sϕ) + P0(ψ2 + sψ) = P1(ϕ2) +
P0(ψ2) + sϕ + sψ implies sϕ = −sψ.

The remainder of the proof shows that for any ȳ1 in the set where both ϕ1 and ϕ2 are differen-
tiable, ϕ′1(ȳ1) = ϕ′2(ȳ1). The same arguments work to show the corresponding claim regarding ψ1

and ψ2.

There exists π ∈ Π(P1, P0) that solves the primal problem (see lemma E.1). For any such π,

1. Supp(P1) = {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ Supp(π)}
This follows because Pr1(Supp(π)) := {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ Supp(π)} is dense in
Supp(P1), and Pr1(Supp(π)) is closed because Y0 is compact.11

2. For all (y1, y0) ∈ Supp(π), ϕk(y1) + ψk(y0) = c(y1, y0).

It is easy to see that the equality holds π-almost surely. To see it holds specifically on the
support, notice that optimality of π and (ϕk, ψk) implies that∫

c(y1, y0)dπ(y1, y0) =

∫
ϕk(y1)dP (y1) +

∫
ψk(y0)dP0(y0)

and recall that ϕk(y1) + ψk(y0) ≤ c(y1, y0) holds for all (y1, y0) ∈ Y × Y. If the inequality
were strict for some (y′1, y

′
0) ∈ Supp(π), then continuity of ϕk, ψk, and c would imply the

inequality is sharp on a ball centered at (y1, y0) of some positive radius, denoted B, leading

11Specifically, for any A ⊆ Y1 × Y0 ⊆ R2, let Pr1(A) = {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ A} be the cartesian
projection of the set A onto the first coordinate. Let P1 ∈ P(Y1), P0 ∈ P(Y0), and π ∈ Π(P1, P0). As noted in Staudt
et al. (2022) (Remark 1), Pr1(Supp(π)) ⊆ Supp(P1) with the possibility that inclusion is strict.

However, Pr1(Supp(π)) is always dense in Supp(P1): let y1 ∈ Supp(P1) and δ > 0 be arbitrary, and suppose for
contradiction that Bδ(y1) ∩ Pr1(Supp(π)) = ∅. Then

(
Bδ(y1) × Y0

)
∩ Supp(π) = ∅ follows from the definition of

Pr1(Supp(π)), and thus

0 = π
((
Bδ(y1)× Y0

)
∩ Supp(π)

)
= π

((
Bδ(y1)× Y0

))
+ π (Supp(π))− π

((
Bδ(y1)× Y0

)
∪ Supp(π)

)
= π

((
Bδ(y1)× Y0

))
= P1(Bδ(y1)) > 0

a contradiction showing Bδ(y1) ∩ Pr1(Supp(π)) 6= ∅. Thus Pr1(Supp(π)) is dense in Supp(P1).
Moreover, if Y0 is compact then the map Pr1 is closed: suppose A ⊆ Y1×Y0 ⊆ R2 is closed, and {y1n}∞n=1 ⊆ Pr1(A)

converges to y1. Then there exists {y0n}∞n=1 ⊆ Y0 such that (y1n, y0n) ∈ A for each n. Since Y0 is compact, there
exists a subsequence {y0nk}

∞
k=1 and y0 such that limk→∞ y0nk = y0. Then notice that limk→∞(y1nk , y0nk ) = (y1, y0).

Since A is closed, (y1, y0) ∈ A.
Supp(π) is closed by definition, hence Pr1(Supp(π)) is closed and dense in Supp(P1), from which it follows that

Supp(π) = Supp(P1).
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to the contradiction∫
c(y1, y0)dπ(y1, y0) =

∫
B
c(y1, y0)dπ(y1, y0) +

∫
Bc
c(y1, y0)dπ(y1, y0)

>

∫
B
ϕk(y1) + ψk(y0)dπ(y1, y0) +

∫
Bc
ϕk(y1) + ψk(y0)dπ(y1, y0)

=

∫
ϕk(y1) + ψk(y0)dπ(y1, y0) =

∫
ϕk(y1)dP1(y1) +

∫
ψk(y0)dP0(y0)

3. For any ȳ1 ∈ Supp(P1), the above implies there there exists ȳ0 ∈ Y0 such that (ȳ1, ȳ0) ∈
Supp(π), and hence ϕk(ȳ1) + ψk(ȳ0) = c(ȳ1, ȳ0). For any such ȳ0,

y1 7→ ϕk(y1)− c(y1, ȳ0) is maximized at ȳ1 (53)

Indeed, if there were y′1 ∈ Y1 such that ϕk(y
′
1)− c(y′1, ȳ0) > ϕk(ȳ1)− c(ȳ1, ȳ0), then by adding

ψk(ȳ0) to both sides we find

ϕk(y
′
1) + ψk(ȳ0)− c(y′1, ȳ0) > ϕk(ȳ1) + ψk(ȳ0)− c(ȳ1, ȳ0) = 0

This implies ϕk(y
′
1) +ψk(ȳ0) > c(y′1, ȳ0), which contradicts ϕk(y

′
1) +ψk(ȳ0) ≤ c(y′1, ȳ0) for all

(y1, y0) ∈ Y1 × Y0.

4. Now observe that if ȳ1 ∈ (y`1, y
u
1 ) is a point at which ϕk is differentiable, then (53) implies

ϕ′k(ȳ1) = ∂c
∂y1

(ȳ1, ȳ0).12 Thus if ȳ1 ∈ (y`1, y
u
1 ) is a point at which both ϕ1 and ϕ2 are differen-

tiable, then

ϕ1(ȳ1) =
∂c

∂y1
(ȳ1, ȳ0) = ϕ2(ȳ1)

This completes the proof.

To specify the subset of the tangent space on which OT ′c,(P1,P0) is linear, let Yd ⊆ Y and

1Yd(y) = 1{y ∈ Yd}. Let G denote a set of real-valued functions g : Y → R with the following

property: if g ∈ G, then 1Yd × g ∈ G.13 Let `∞Yd(G) be the set of bounded, linear functions

H : G → R that evaluate constant functions to zero and “ignore” the value of functions outside of

Yd. Specifically, define

`∞Yd(G) =
{
H ∈ `∞(G) ; for all a, b ∈ R and f, g ∈ G,

(i) H(f) = H(1Yd × f), (ii) if a ∈ G then H(a) = 0, and

(iii) if af + bg ∈ G then H(af + bg) = aH(f) + bH(g)
}

(54)

Here we slightly abuse notation; a ∈ G refers to the function mapping each point in Y to the

12Notice that the “choice” of π or ȳ0 doesn’t matter, because ϕ′k(ȳ1) can take only one value.
13If we have a set G̃ that does not satisfy this property, the set G = G̃ ∪

{
1Yd × g ; g ∈ G̃

}
will satisfy it.
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constant a ∈ R. Equip `∞Yd(G) with the supremum norm, ‖H‖G = ‖H‖∞ = supg∈G |H(g)|. As

shown in appendix C, first stage estimators of (P1, P0) based on the empirical distribution have

weak limits concentrated on `∞Y1
(Fc)× `∞Y0

(Fcc ) where Yd is the support of Pd.

Lemma B.4. `∞Yd(G) defined by (54) is closed.

Proof. Let {Hn}∞n=1 ⊆ `∞Yd(G) be Cauchy, and let H be its limit in the Banach space `∞(G). It
suffices to show H ∈ `∞Yd(G).

Toward this end, first notice that ‖Hn − H‖G → 0 implies that for any f ∈ G, |Hn(f) −
H(f)| → 0. Next observe that if the constant function a ∈ G, then 0 = limn→∞|Hn(a) −H(a)| =
limn→∞|H(a)| = |H(a)|. For any function f ∈ G, since Hn(f) = Hn(1Yd × f),

0 ≤ |H(f)−H(1Yd × f)| ≤ |H(f)−Hn(f)|+ |H(1Yd × f)−Hn(1Yd × f)| → 0

and thus H(1Yd × f) = H(f). Finally, suppose a, b ∈ R and f, g ∈ G are such that af + bg ∈ G.
Similar to the argument above, since Hn(af + bg) = aHn(f) + bHn(g),

0 ≤ |H(af + bg)− aH(f)− bH(g)|
≤ |H(af + bg)−Hn(af + bg)|+ |aHn(f) + bHn(f)− aH(f)− bHn(g)|
≤ |H(af + bg)−Hn(af + bg)|+ |a||Hn(f)−H(f)|+ |b||Hn(g)−Hn(g)| → 0

and thus H(af + bg) = aH(f) + bH(g).
This shows H ∈ `∞Yd(G), and completes the proof.

Lemma B.5 (Full differentiability of optimal transport). Let c : Y × Y → R be lower semicon-
tinuous, F1,F0 be sets of measurable functions mapping Y to R, and Fc ⊆ F1 and Fcc ⊆ F0 be
universally bounded subsets. Suppose that

1. Strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0),

2. P dominates P1 and P0 with bounded densities,

3. Fd is P -Donsker and supf∈Fd |P (f)| <∞ for each d = 1, 0, and

4. (F1 ×F0, L2) and the subset

Φc ∩ (Fc ×Fcc ) = {(ϕ,ψ) ∈ Fc ×Fcc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

are complete.

Let Y1,Y0 ⊆ Y and Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ), and further assume

4. For any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), there exists s ∈ R such that

1Y1 × ϕ1 = 1Y1 × (ϕ2 + s), P -a.s. and 1Y0 × ψ1 = 1Y0 × (ψ2 − s), P -a.s.
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Then OTc : `∞(F1)× `∞(F0)→ R defined by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

is fully Hadamard differentiable at (P1, P0) tangentially to

DTan,Full =
(
`∞Y1

(Fc)× `∞Y0
(Fcc )

)
∩
(
C(F1, L2,P )× C(F0, L2,P )

)
(55)

with derivative OT ′c,(P1,P0) : DTan,Full → R given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Proof. The first four assumptions allow application of lemma B.2 to find that OTc : `∞(F1) ×
`∞(F0)→ R given by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

is Hadamard directionally differentiable at (P1, P0) tangentially to DTan = C(F1, L2,P )×C(F0, L2,P ).
The set of maximizers Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is nonempty, and the
derivative OT ′c,(P1,P0) : DTan → R is given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Next observe that for any (H1, H0) ∈ DTan,Full, H1 +H0 is flat on Ψc(P1, P0). Specifically, for
any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), let s be such that

1Y1 × ϕ1 = 1Y1 × (ϕ2 + s), P -a.s. and 1Y0 × ψ1 = 1Y0 × (ψ2 − s), P -a.s.

Then

H1(ϕ1) +H0(ψ1) = H1(1Y1 × ϕ1) +H0(1Y0 × ψ1)

= H1(1Y1 × (ϕ2 + s)) +H0(1Y0 × (ψ2 − s))
= H1(ϕ2 + s) +H0(ψ2 − s)
= H1(ϕ2) +H1(s) +H0(ψ2)−H0(s)

= H1(ϕ2) +H0(ψ2)

where the first, third, fourth, and fifth equalities hold because (H1, H0) ∈ `∞Y1
(Fc) × `∞Y0

(Fcc ), and
the second because (H1, H0) ∈ C(F1, L2,P )× C(F0, L2,P ).

Now use this “flatness” to observe the derivative is linear. Let (H1, H0), (G1, G0) ∈ DTan,Full,
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a, b ∈ R, and (ϕ̃, ψ̃) ∈ Ψc(P1, P0), and notice that

OT ′c,(P1,P0)(a(H1, H0) + b(G1, G0)) = sup
(ϕ,ψ)∈Ψ(P1,P0)

(aH1 + bG1)(ϕ) + (aH0 + bG0)(ψ)

= aH1(ϕ̃) + bG1(ϕ̃) + aH0(ψ̃) + bG0(ψ̃) = a(H1(ϕ̃) +H0(ψ̃)) + b(G1(ϕ̃) +G0(ψ̃)

= a× sup
(ϕ,ψ)∈Ψ(P1,P0)

{H1(ϕ) +H0(ψ)}+ b× sup
(ϕ,ψ)∈Ψ(P1,P0)

{G1(ϕ) +G0(ψ)}

= aOT ′c,(P1,P0)(H1, H0) + bOT ′c,(P1,P0)(G1, G0)

Since OT ′c,(P1,P0) is linear on the subspace DTan,Full, Fang & Santos (2019) proposition 2.1

implies OTc is fully Hadamard differentiable at (P1, P0) tangentially to DTan,Full.
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C Appendix: weak convergence

Recall that

θLx = θL(P1|x, P0|x), θHx = θH(P1|x, P0|x)

θL =
∑
x

sxθ
L
x , θL =

∑
x

sxθ
H
x

γL = inf
t∈[θL,θH ]

g(t, η) γH = sup
t∈[θL,θH ]

g(t, η)

where η = (η1, η0), with ηd ∈ RKd having coordinates

η
(k)
d =

∑
x

P (X = x | D1 > D0)E[η
(k)
d (Yd) | D1 > D0, X = x] =

∑
x

sxη
(k)
d,x

Here η
(k)
d,x = Pd|x(η

(k)
d ), which are collected as ηd,x = (η

(1)
d,x, . . . , η

(Kd)
d,x ).

Define the following sets of functions:

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . ,K1

}
(56)

F̃0 =
{
f : Y → R ; f = ψ for some ψ ∈ Fcc , or f = η

(k)
0 for some k = 1, . . . ,K0

}
Fd,x =

{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}
where Yd,x is the support of Y | D = d,X = x, and 1Yd,x(y) = 1{y ∈ Yd,x}. The additional

functions of the form f(y) = 1Yd,x(y)g(y) are used to characterize the support of the weak limit of
√
n(P̂d|x − Pd|x) in `∞(Fd,x). The maps Pd|x can be written as

Pd|x : Fd,x → R, Pd|x(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,1−d)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
(57)

and finally, define the set

F =
⋃
d,x,z

{1d,x,z × f ; f ∈ Fd,x} ∪ {1d,x,z,1x,z,1x}. (58)

This appendix defines and studies the map T : DC ⊆ `∞(F) → R2 given by (γL, γH) = T (P ).

The coming results show that F is P -Donsker, and the map T is Hadamard directionally differen-

tiable at P . Together these imply, through the functional delta method, the weak convergence of
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√
n(T (Pn)− T (P )) (Fang & Santos (2019)).

Several operations in the definition of the map T are repeated for each x ∈ X = {x1, . . . , xM},

leading to large expressions. These are shortened with the notation {ax}x∈X , which refers to

(ax1 , . . . , axM ). For example,

({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
= (P1|x1

, P0|x1
, η1,x1 , η0,x1 , sx1 , . . . , P1|xM , P0|xM , η1,xM , η0,xM , sxM )

is an element of
∏M
m=1 `

∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R.

The function T is viewed as the composition of four functions: T (P ) = T4(T3(T2(T1(P )))).

1. T1 is the map to the conditional distributions and ηd,x: T1(P ) = ({P1|x, P0|x, η1,x, η0,x, sx}x∈X ),

2. T2 involves optimal transport: T2({(P1|x, P0|x, η1,x, η0,x, sx)}x∈X ) = ({θLx , θHx , η1,x, η0,x, sx}x∈X ),

3. T3 takes expectations over covariates: T3({(θLx , θHx , η1,x, η0,x, sx)}x∈X ) 7→ (θL, θH , η),

4. T4 optimizes over t ∈ [θL, θH ]: T 4(θL, θH , η) = (γL, γH).

C.1 Verifying Donsker conditions

Before studying this map, this subsection shows the relevant sets are Donsker. The function classes

Fc and Fcc given by (14) and (15), or by (16) and (17), are well known Donsker classes as noted

below. The results of van der Vaart & Wellner (1997) chapter 2.10 allow these to be extended to

show F1,x and F0,x are Donsker. It follows quickly that F is Donsker.

Lemma C.1. Suppose that Y ⊂ R is compact and c : Y × Y → R is L-Lipschitz. Let Fc, Fcc be
given by (14) and (15) respectively. Then Fc and Fcc are universally Donsker.

Proof. Note that any distribution defined on the compact Y has a finite 2 + δ moment. The result
follows from the bracketing number bound given by van der Vaart & Wellner (1997) corollary
2.7.4.

Lemma C.2. Fc and Fcc given by (16) and (17) are universally Donsker.

Proof. The intervals (convex subsets of R) form a well-known VC class with VC-dimension at most
3. Consider an arbitrary set of three real numbers {y1, y2, y3} with y1 < y2 < y3, and notice
that no interval can pick out the set {y1, y3}; that is, there does not exist an interval I with
{y1, y3} = {y1, y2, y3} ∩ I. Since the intervals cannot shatter finite sets of size 3, the VC-dimension
of the intervals is at most 3.
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Similarly, the complements of intervals form a VC class of VC-dimension at most 4. Consider
{y1, y2, y3, y4} with y1 < y2 < y3 < y4 and notice that no complement of an interval can pick out
{y1, y3}. Since the complements of intervals cannot shatter finite sets of size 4, the VC-dimension
of the complements of intervals is at most 4.

The claim follows, because any (suitably measurable) VC class is Donsker for any probability
measure (van der Vaart & Wellner (1997) section 2.6.1).

Lemma C.3. Let G be P -Donsker and 1A be the indicator function for the set A. Then the set
{1A × g ; g ∈ G} is P -Donsker.

Proof. The proof is an application of van der Vaart & Wellner (1997) theorem 2.10.6. Specifically,
let φ : G × {1A} → R be the map φ(g,1a) = 1A × g. Notice that for any f, g ∈ G1 × {1A},

|φ ◦ f(w)− φ ◦ g(w)|2 = |1A(w)× f1(w)− 1A(w)× g1(w)|2

= 1A(w)× |f1(w)− g2(w)|2

≤ |f1(w)− g1(w)|2 =
k∑
`=1

(f`(w)− g`(w))2

and thus van der Vaart & Wellner (1997) condition (2.10.5) holds. Moreover, notice that for any
g ∈ G, (1A × g)2 ≤ g2 and P -square integrability of g ∈ G implies 1A × g is P -square integrable.
Thus van der Vaart & Wellner (1997) theorem 2.10.6 implies {1A × g ; g ∈ G} is P -Donsker.

Lemma C.4 (Fd,x are P -Donsker). Suppose assumptions 1, 2, and 3 hold. Let Fc and Fcc be given
by (14) and (15), or by (16) and (17). Let Fd,x be as defined in (56). Then Fd,x is P -Donsker and
supf∈Fd,x |P (f)| <∞.

Proof. 1. We first show F̃d is P -Donsker and supg∈F̃d |P (f)| < ∞. The argument shows the

argument for F̃1, as the same argument works when applied to F̃0.

Begin by noticing that

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . ,K1

}
= Fc ∪

{
η

(1)
1 , . . . , η

(K1)
1

}
Since

{
η

(1)
1 , . . . , η

(K1)
1

}
is a finite number of functions which, by assumption 3 (i), have finite

second P -moment: P ((η
(k)
1 )2) < ∞. Thus

{
η

(1)
1 , . . . , η

(K1)
1

}
is Donsker. Fc is Donsker by

lemma C.1 or C.2, and so F̃1 = Fc ∪
{
η

(1)
1 , . . . , η

(K1)
1

}
is the union of two P -Donsker sets.

Since
‖P‖F̃1

= max{ sup
ϕ∈Fc
|P (ϕ)|, |P (η

(1)
1 )|, . . . , |P (η

(K1)
1 )|} <∞

van der Vaart & Wellner (1997) example 2.10.7 shows F̃1 is P -Donsker. Note we have also
shown that supg∈F̃1

|P (f)| <∞.
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2. Now notice that

Fd,x =
{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}
= F̃d ∪

{
1Yd,x × g ; g ∈ F̃d

}
Lemma C.3 shows

{
1Yd,x × g ; g ∈ F̃d

}
is P -Donsker. Moreover, since Fc is universally

bounded,

‖P‖{
1Yd,x×g ; g∈F̃d

} = max

{
sup
ϕ∈Fc
|P (1Yd,x × ϕ)|, |P (1Yd,x × η

(1)
1 )|, . . . , |P (1Yd,x × η

(K1)
1 )|

}
<∞

It follows that

‖P‖Fd,x = sup
f∈Fd,x

|P (f)| = max

 sup
f∈F̃d
|P (f)|, sup

f∈{1Yd,x×g ; g∈F̃d}
|P (f)|

 <∞

Thus van der Vaart & Wellner (1997) example 2.10.7 implies F1 is P -Donsker.

Lemma C.5 (F is P -Donsker). Suppose assumptions 1, 2 and 3 hold. Then F is P -Donsker,
implying

√
n(Pn − P )

L→ G in `∞(F),

where G is a tight, mean-zero Gaussian process with P (G ∈ C(F , L2,P ) = 1.

Proof. Lemma C.3 shows {1d,x,z × f ; f ∈ Fd,x} is P -Donsker. Moreover, Fd,x is the union of a
subset of universally bounded functions (in either Fc or Fcc ) and a finite subset of square integrable
functions. It follows that

‖P‖{1d,x,z×g ; g∈Fd,x} = sup
f∈{1d,x,z×g ; g∈Fd,x}

|P (f)| <∞

Next notice that

F =
⋃
d,x,z

{1d,x,z × f ; f ∈ Fd,x} ∪ {1d,x,z,1x,z,1x}

is the union of a finite number of P -Donsker sets, with

‖P‖F = max
d,x,z

max

 sup
f∈{1d,x,z×g ; g∈Fd,x}

|P (f)|, |P (1d,x,z)|, |P (1x,z)|, |P (1x)|,


 <∞

It follows from van der Vaart & Wellner (1997) example 2.10.7 that F is P -Donsker, which implies
√
n(Pn − P )

L→ G in `∞(F), where G is a tight, mean-zero Gaussian process. Moreover, van der
Vaart & Wellner (1997) section 2.1.2 and problem 2.1.2 imply that P (G ∈ C(F , L2,P ) = 1.
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C.2 Conditional Distributions, T1(P ) = ({P1|x, P0|x, η1,x, η0,x, sx}x∈X )

Lemma 2.1 shows that the distributions of Yd | D1 > D0, X = x, denoted Pd|x, are identified by

Pd|x(f) = EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

and the distribution of X conditional on D1 > D0 is identified by

sx = P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

Recall the notation shortening indicators

1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z}, 1x,z(X,Z) = 1{X = x, Z = z}, 1x(X) = 1{X = x}

and notice that Pd|x : `∞(Fd)→ R and sx ∈ R, given by

Pd|x(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,0)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
,

sx =
[P (11,x,1)/P (1x,1)− P (11,x,0)/P (1x,0)]P (1x)∑
x′ [P (11,x′,1)/P (1x′,1)− P (11,x′,0)/P (1x′,0)]P (1x′)

,

are functions of P ∈ `∞(F). Moreover, η
(k)
d,x = E[η

(k)
d (Yd) | D1 > D0, X = x] = Pd|x(η

(k)
d ) and

ηd,x = (η
(1)
d,x, . . . , η

(K1)
d,x ) is simply an evaluation of Pd|x at the points η

(k)
d ∈ Fd,x.

This map is given by

T1 : DC ⊆ `∞(F)→
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× R× R(K1) × R(K0)

T1(P ) =
({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
= (P1|x1

, P0|x1
, η1,x1 , η0,x1 , sx1 , . . . , P1|xM , P0|xM , η1,xM , η0,xM , sxM )
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where the domain, DC ⊆ `∞(F), ensures the map never divide by zero:

DC =
{
G ∈ `∞(F) ; for all (d, x, z), G(1x) > 0, G(1x,z) > 0, and

G(1d,x,d)/G(1x,d)−G(1d,x,1−d)/G(1x,1−d) > 0
}

(59)

Note that assumption 1 implies P ∈ DC , a claim shown in the proof of lemma C.7 below.

Lemma F.5 shows that Hadamard differentiable functions with the same domain can be “stacked”.

Moreover, the coordinates corresponding to the η terms are evaluations of the Pd|x at specific coor-

dinates; since evaluation is linear and continuous, the map defining these terms is fully Hadamard

differentiable if the other maps are fully Hadamard differentiable. Thus it suffices to ensure the

maps Cd,x : DC → R and Cs,x : DC → R given by Cd,x(P ) = Pd|x and Cs,x(P ) = sx are fully

Hadamard differentiable at P tangentially to `∞(F).

Lemma C.6 (Maps to conditional distributions are fully Hadamard differentiable). Let F be
defined by (58), and DC be defined by (59). Define the functions C1,x, C0,x, and Cs,x with

Cd,x : DC → `∞(Fd,x), Cd,x(G)(f) =
G(1d,x,d × f)/G(1x,d)−G(1d,x,1−d × f)/G(1x,1−d)

G(1d,x,d)/G(1x,d)−G(1d,x,1−d)/G(1x,1−d)
,

Cs,x : DC → R, Cs,x(G) =
[G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)]G(1x)∑
x′ [G(11,x′,1)/G(1x′,1)−G(11,x′,0)/G(1x′,0)]G(1x′)

All three functions are fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F), with
derivatives C ′d,x,G : `∞(F)→ `∞(Fd,x) and C ′s,x,G : `∞(F)→ R described in the proof.

Proof. In steps:

1. We first show differentiability of C1,x. The argument applies the chain rule. An inner function
“rearranges” elements of DC ⊆ `∞(F), which can be viewed as a fully Hadamard differentiable
mapping (see lemma F.6). An outer function maps that rearrangment to `∞(F1), and is shown
fully Hadamard differentiable at G ∈ DC by applying corollary F.8.

In detailed steps:

(a) Define Dq =
{

(n1, p11, p1, n0, p10, p0) ∈ R6 ; p1 > 0, p0 > 0, p11/p1 − p10/p0 > 0
}

and

q : Dq → R, q(n1, p11, p1, n0, p10, p0) =
n1/p1 − n0/p0

p11/p1 − p10/p0

60



Recall the following notation from corollary F.8:

`∞(F1,Dq) =

{
r : F1 → R6 ; r(ϕ) ∈ Dq, sup

ϕ∈F1

‖r(f)‖ <∞

}
⊆ `∞(F1)6

`∞q (F1,Dq) =

{
r ∈ `∞(F1,Dq) ; sup

f∈F1

|q(r(f))| <∞

}

For elements r ∈ `∞(F1,Dq), the composition q(r(ϕ)) is well defined for any ϕ ∈ F1.
For elements r ∈ `∞q (F1,Dq), composition defines a bounded map; that is, ϕ 7→ q(r(ϕ))
defines an element of `∞(F1). Finally, define

Q : `∞q (F1,Dq)→ `∞(F1), Q(r)(ϕ) = q(r(ϕ))

(b) For the rearrangement, define F̃1,x,1 = {11,x,1 × f ; f ∈ F1}, F̃1,x,0 = {11,x,0 × f ; f ∈ F1},
and

R̃1,x : DC → `∞(F̃1,x,1)× `∞({11,x,1})× `∞({1x,1})× `∞(F̃1,x,0)× `∞({11,x,0})× `∞({1x,0})
R̃1,x(G)(11,x,1 × f,11,x,1,1x,1,11,x,0 × f,11,x,0,1x,0)

= (G(11,x,1 × f), G(11,x,1), G(1x,1), G(11,x,0 × f), G(11,x,0), G(1x,0))

Lemma F.6 shows that R̃1,x is fully Hadamard differentiable tangentially to `∞(F) and
is its own derivative; i.e. R̃′1,x,g = R̃1,x. Now view R̃1,x as a map from DC ⊆ `∞(F) to
`∞q (F1,Dq), i.e. define R1,x : DC → `∞q (F1,Dq) pointwise with

R1,x(G)(f) = R̃1,x(G)(11,x,1 × f,11,x,1,1x,1,11,x,0 × g,11,x,0,1x,0)

= (G(11,x,1 × f), G(11,x,1), G(1x,1), G(11,x,0 × f), G(11,x,0), G(1x,0))

Note that G ∈ DC implies

sup
f∈F1

|q(R1,x(G)(f))| = sup
f∈F1

∣∣∣∣G(11,x,1 × f)/G(1x,1)−G(11,x,0 × f)/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

∣∣∣∣ <∞
and thus R1,x(G) ∈ `∞q (F1,Dq).

(c) To apply corollary F.8, observe that q(n1, p11, p1, n0, p10, p0) = n1/p1−n0/p0

p11/p1−p10/p0
is continu-
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ously differentiable on Dq with gradient ∇q : Dq → R6 given by

∇q(n1, p11, p1, n0, p10, p0) =
(
∂q
∂n1

, ∂q
∂p11

, ∂q
∂p1

, ∂q
∂n0

, ∂q
∂p10

, ∂q
∂p0

)ᵀ
,

∂q

∂n1
=

1/p1

p11/p1 − p10/p0

∂q

∂p11
= − n1/p1 − n0/p0

(p11/p1 − p10/p0)2

1

p1
=

[
1/p1

p11/p1 − p10/p0

]
(−q)

∂q

∂p1
=

(p11/p1 − p10/p0)(−n1/p
2
1)− (n1/p1 − n0/p0)(−p11/p

2
1)

(p11/p1 − p10/p0)2

=
−n1/p

2
1

p11/p1 − p10/p0
+

q(p11/p
2
1)

p11/p1 − p10/p0
=

[
1/p1

p11/p1 − p10/p0

]
qp11 − n1

p1

∂q

∂n0
=

−1/p0

p11/p1 − p10/p0

∂q

∂p10
= − n1/p1 − n0/p0

(p11/p1 − p10/p0)2

(
− 1

p0

)
=

[
−1/p0

p11/p1 − p10/p0

]
(−q)

∂q

∂p0
=

(p11/p1 − p10/p0)(n0/p
2
0)− (n1/p1 − n0/p0)(p10/p

2
0)

(p11/p1 − p10/p0)2

=
n0/p

2
0

p11/p1 − p10/p0
− q(p10/p

2
0)

p11/p1 − p10/p0
=

[
−1/p0

p11/p1 − p10/p0

]
qp10 − n0

p0

Furthermore, there exists δ > 0 such that

R1,x(G)(F1) =

{
r ∈ R6 ; inf

f∈F1

‖r −R1,x(G)(ϕ)‖ ≤ δ
}
⊆ Dq

and so lemma F.8 implies Q is fully Hadamard differentiable at R1,x(G) tangentially to
`∞(F1)6 with derivative Q′R1,x(G) : `∞(F1)6 → `∞(F1) given pointwise by

Q′R1,x(G)(J)(f) = [∇q(R1,x(G)(ϕ))]ᵀ J(f)

(d) Finally, observe that C1,x(G) = Q(R1,x(G)) and apply the chain rule (lemma F.4) to find
that C1,x is fully Hadamard differentiable at G tangentially to `∞(F) with derivative

C ′1,x,G : `∞(F)→ `∞(F1,x), C ′1,x,G(H) = Q′R1,x(G)(R1,x(H))
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Writing out an evaluation clarifies the notation of the derivative:

C ′1,x,G(H)(f) = Q′R1,x(G)(R1,x(H))(f) = [∇q(R1,x(G)(f))]ᵀR1,x(H)(f) (60)

=

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
H(11,x,1 × f)

+

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
(−C1,x(G)(f))H(11,x,1)

+

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
C1,x(G)(f)×G(11,x,1)−G(11,x,1 × f)

G(1x,1)
H(1x,1)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
H(11,x,0 × f)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
(−C1,x(G)(f))H(11,x,0)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
C1,x(G)(f)×G(11,x,0)−G(11,x,0 × f)

G(1x,0)
H(1x,0)

2. The same arguments imply the claim regarding C0,x.

Specifically, notice that C0,x is the same outer transformation applied to a different rearrange-
ment: let

R1,x(G)(ϕ) = (G(11,x,1 × ϕ), G(11,x,1), G(1x,1), G(11,x,0 × ϕ), G(11,x,0), G(1x,0))

R0,x(G)(ϕ) = (G(10,x,0 × ψ), G(10,x,0), G(1x,0), G(10,x,1 × ψ), G(10,x,1), G(1x,1))

observe that

C1,x(G)(f) =
G(11,x,1 × f)/G(1x,1)−G(11,x,0 × f)/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)
= q(R1,x(G)(f))

C0,x(G)(f) =
G(10,x,0 × f)/G(1x,0)−G(10,x,1 × f)/G(1x,1)

G(10,x,0)/G(1x,0)−G(10,x,1)/G(1x,1)
= q(R0,x(G)(f))

Thus, the same argument shows C0,x : DC → `∞(F0,x) is fully Hadamard differentiable at
any G ∈ DC tangentially to `∞(F), and C ′0,x,G(H)(f) can be found with the appropriate
substitutions in (60) above.

3. Finally consider Cs,x. Notice that

Dqs,x =
{
{p1,x,1, px,1, p1,x,0, px,0, px}x∈X ∈ R5M ;

px,1 > 0, px,0 > 0, p1,x,1/px,1 − p1,x,0/px,0 > 0, px > 0 for all x ∈ X
}

qs,x : Dqs,x → R,

qs,x({p1,xm,1, pxm,1, p1,xm,0, pxm,0}Mm=1) =
(p1,x,1/px,1 − p1,x,0/px,0)px∑M

m=1(p1,xm,1/pxm,1 − p1,xm,0/pxm,0)pxm

is continuously differentiable at any point in Dqs,x with gradient

∇q({p1,xm,1, pxm,1, p1,xm,0, pxm,0, pxm}Mm=1) ∈ R5M
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Furthermore, notice that for any G ∈ DC , Cs,x(G) = qs,x(Rs,x(G)), where

Rs,x : `∞(F)→ R5M , Rs,x(G) = ({G(11,xm,1), G(1xm,1), G(11,xm,0), G(1xm,0), G(1xm)}Mm=1)

It follows that Cs,x : DC → R is fully Hadamard differentiable at any G ∈ DC tangentially to
`∞(F). The derivative is

C ′s,x,G(H) =
M∑
m=1

∂qs,x
∂p1,xm,1

(Rs,x(G))×H(11,xm,1) +
∂qs,x
∂pxm,1

(Rs,x(G))×H(1xm,1)

+
∂qs,x

∂p1,xm,0
(Rs,x(G))×H(11,xm,0) +

∂qs,x
∂pxm,0

(Rs,x(G))×H(1xm,0)

+
∂qs,x
∂pxm

(Rs,x(G))×H(1xm)

This completes the proof.

Lemma C.7 (T1 is fully Hadamard differentiable). Let F be defined by (58) and DC by (59). Let
Cd,x and Cs,x be as defined in lemma C.6, and

η̃d,x : DC → RKd , η̃d,x(G) =
(
Cd,x(G)(η

(1)
d,x), . . . , Cd,x(G)(η

(Kd)
d,x )

)
Further define

T1 : DC →
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

T1(G) =
(
{C1,x(G), C0,x(G), η̃1,x(G), η̃0,x(G), Cs,x(G)}x∈X

)
T1 is fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F).

Proof. Lemma C.6 shows that Cd,x and Cs,x are fully Hadamard differentiable at any G ∈ DC
tangentially to `∞(F).

Define the evaluation maps

ev
η

(k)
d

: `∞(Fd,x)→ R, ev
η

(k)
d

(H) = H(η
(k)
d )

Note that each ev
η

(k)
d

is continuous and linear, and is therefore fully Hadamard differentiable at any

H ∈ `∞(Fd,x) tangentially to `∞(Fd,x) (and is its own derivative). Moreover,

η̃d,x(G) = (ev
η

(1)
d

(Cd,x(G)), . . . , ev
η

(K1)
d

(Cd,x(G)))

is the composition of an inner function that is fully Hadamard differentiable at any G ∈ DC , and
an other function that is fully differentiable at any H ∈ `∞(Fd,x). Therefore η̃d,x is fully Hadamard
differentiable at any G ∈ DC tangentially to `∞(F).
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Next apply lemma F.5 to find that

T1 : DC →
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

T1(G) =
(
{C1,x(G), C0,x(G), η̃1,x(G), η̃0,x(G), Cs,x(G)}x∈X

)
is fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F).

C.2.1 Support of the weak limit of
√
n(T1(Pn)− T1(P ))

The next few lemmas study the support of the asymptotic distribution of
√
n(T1(Pn)− T1(P )); in

particular, it concentrates on the tangent set of the next map studied in appendix C.3.

Lemma C.8 (Continuity of C ′d,x,G(H)(·)). Let Cd,x be as defined in lemma C.6. If G,H ∈
C(F , L2,P ), then C ′d,x,G(H) ∈ C(Fd,x, L2,P ).

Proof. Consider C ′1,x,G(H) first. Fix f ∈ F1,x and let ε > 0. Let

Coef1(G) =

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
Coef2(G) =

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
and use display (60) to see that

|C ′1,x,G(H)(f)− C ′1,x,G(H)(g)|

=

∣∣∣∣∣Coef1(G)× [H(11,x,1 × f)−H(11,x,1 × g)]

+ Coef1(G)× (− [C1,x(G)(f)− C1,x(G)(g)])H(11,x,1)

+ Coef1(G)× [C1,x(G)(f)− C1,x(G)(g)]×G(11,x,1)− [G(11,x,1 × f)−G(11,x,1 × g)]

G(1x,1)
H(1x,1)

+ Coef2(G)× [H(11,x,0 × f)−H(11,x,0 × g)]

+ Coef2(G)× (− [(C1,x(G)(f))− C1,x(G)(g)])H(11,x,0)

+ Coef2(G)× [C1,x(G)(f)− C1,x(G)(g)]×G(11,x,0)− [G(11,x,0 × f)−G(11,x,0 × g)]

G(1x,0)
H(1x,0)

∣∣∣∣
Recall that C1,x(G)(f) =

G(11,x,1×f)/G(1x,1)−G(11,x,0×f)/G(1x,0)
G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0) , and thus

C1,x(G)(f)−C1,x(G)(g) =
[G(11,x,1 × f)−G(11,x,1 × g)]/G(1x,1)− [G(11,x,0 × f)−G(11,x,0 × g)]/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)
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use this to see that

|C ′1,x,G(H)(f)− C ′1,x,G(H)(g)|
≤ A1 × |H(11,x,1 × f)−H(11,x,1 × g)|+A2 × |G(11,x,1 × f)−G(11,x,1 × g)|

+A3 × |H(11,x,0 × f)−H(11,x,0 × g)|+A4 × |G(11,x,0 × f)−G(11,x,0 × g)| (61)

for finite constants A1, A2, A3, and A4 that depend on G and H, but not on f or g. Now use
G,H ∈ C(F , L2,P ) to choose δz,H > 0 and δz,G > 0 such that

L2,P (11,x,1 × f,11,x,1 × g) < δ1,H =⇒ |H(11,x,1 × f)−H(11,x,1 × g)| < ε/(4A1)

L2,P (11,x,1 × f,11,x,1 × g) < δ1,G =⇒ |G(11,x,1 × f)−G(11,x,1 × g)| < ε/(4A2)

L2,P (11,x,0 × f,11,x,0 × g) < δ0,H =⇒ |H(11,x,0 × f)−H(11,x,0 × g)| < ε/(4A3)

L2,P (11,x,0 × f,11,x,0 × g) < δ0,G =⇒ |G(11,x,0 × f)−G(11,x,0 × g)| < ε/(4A4) (62)

Finally, notice that

L2,P (11,x,z × f,11,x,z × g) =
√
P ((11,x,z × f − 11,x,z × g)2) =

√
P (11,x,z × (f − g)2)

≤
√
P ((f − g)2) = L2,P (f, g) (63)

It follows from (61), (62), and (63) that

L2,P (f, g) < min{δ1,H , δ1,G, δ0,H , δ0,G} =⇒ |C ′1,x,G(H)(f)− C ′1,x,G(H)(g)| < ε

i.e., C ′1,x,G(H)(·) is continuous at f . Since f ∈ F1,x and G,H ∈ C(F , L2,P ) were arbitrary, this
shows that G,H ∈ C(F , L2,P ) implies C ′1,x,G(H) ∈ C(F1,x, L2,P ).

The same argument shows that G,H ∈ C(F , L2,P ) implies C ′0,x,G(H) ∈ C(F0,x, L2,P ). This
completes the proof.

Lemma C.9 (Support of T ′1,P (G)). Let F be defined by (58) and T1 be as defined in lemma C.7.

1. If assumption 1 holds, P ∈ DC and hence T1 is fully Hadamard differentiable at P tangentially
to `∞(F).

2. If assumptions 1, 2, and 3 hold,

√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G)

where G is the Gaussian limit of
√
n(Pn − P ) in `∞(F) discussed in lemma C.5.

3. If assumptions 1, 2, and 3, then P (T ′1,P (G) ∈ DTan,Full) = 1 where

DTan,Full =

M∏
m=1

(
`∞Y1,xm

(F1,xm)×`∞Y0,xm
(F0,xm)

)
∩
(
C(F1,xm , L2,P )×C(F0,xm , L2,P )

)
×RK1×RK0×R

(64)

Proof. In steps:
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1. P ∈ DC and differentiability of T1 at P .

Assumption 1 implies P ∈ DC , given by (59). To see this, recall that assumption 1 (iv) is that
P (1x,z) = P (X = x, Z = z) > 0 (implying P (1x) = P (X = x) = P (X = x, Z = 1) + P (X =
x, Z = 0) > 0). Furthermore,

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

= P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)

= P (D1 > D0 | X = x) > 0

The second equality is shown in the proof of lemma 2.1, and the inequality is assumption 1
(iii). Lemma C.7 thus shows that T1 is fully Hadamard differentiable at P tangentially to
`∞(F).

2. Functional delta method.

Under assumptions 1, 2, and 4, lemma C.5 shows that
√
n(Pn − P )

L→ G in `∞(F). The
functional delta method (Van der Vaart (2000) theorem 20.8) then implies

√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G), in
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

3. Support of T ′1,P (G).

Notice that T ′P (G) =
({
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

}
x∈X

)
, where η̃d,x

are defined in lemma C.7. Let

Sx =
(
`∞Y1,xm

(F1,xm)× `∞Y0,xm
(F0,xm)

)
∩
(
C(F1,xm , L2,P )× C(F0,xm , L2,P )

)
× RK1 × RK0 × R

and note that it suffices to show P
(
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

)
=

1 for each x. Moreover,

P
((
η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

)
∈ RK1 × RK0 × R

)
= 1

is immediate. To complete the proof we must show P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x)) = P (C ′d,x,P (G) ∈
C(Fd,x, L2,P )) = 1.

(a) To see that P (C ′d,x,P (G) ∈ C(Fd,x, L2,P )) = 1, first note that for any functions f1, f2 ∈ F ,

|P (f1)− P (f2)| ≤ P (|f1 − f2|) = P (
√

(f1 − f2)) ≤
√
P ((f1 − f2)2) = L2,P (f1, f2)

where the second inequality is an application of Jensen’s inequality. Thus P ∈ C(F , L2,P ).

Next apply lemma C.8 to see that if G ∈ C(F , L2,P ) then C ′d,x,P (G) ∈ C(Fd,x, L2,P ). It
follows that

1 = P (G ∈ C(F , L2,P )) ≤ P
(
C ′d,x,P (G) ∈ C(Fd,x, L2,P )

)
(b) To see that P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x)) = 1, we show that P (

√
n(Cd,x(Pn)− Cd,x(P )) ∈

`∞Yd,x(Fd,x)) = 1.
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First recall the definition given in (54):

`∞Yd,x(Fd,x) =
{
H ∈ `∞(Fd,x) ; for all a, b ∈ R and f, g ∈ Fd,x,

H(f) = H(1Yd,x × f), if a ∈ Fd,x then H(a) = 0, and

if af + bg ∈ Fd,x then H(af + bg) = aH(f) + bH(g)
}

i.
√
n(Cd,x(Pn)− Cd,x(P )) is linear and evaluates constants to zero.

This follows because Cd,x(Pn) and Cd,x(P ) are linear and “return constants”. To
see this, recall that Cd,x(P ) ∈ `∞(Fd,x) is given pointwise by

Cd,x(P )(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,1−d)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

Use this to see that for any a, b ∈ R and f, g ∈ Fd,x. if af + bg ∈ Fd,x, then linearity
of P implies Cd,x(P )(af + bg) = aCd,x(P )(f) + bCd,x(P )(g) and Cd,x(Pn)(af +
bg) = aCd,x(Pn)(f) + bCd,x(Pn)(g). Similarly, if a ∈ Fd,x is the constant function
always returning a, then Cd,x(P )(a) = a. The same observations apply to Cd,x(P) ∈
`∞(Fd,x).
Therefore

√
n(Cd,x(Pn)− Cd,x(P ))(af + bg)

=
√
n(Cd,x(Pn)(af + bg) = −Cd,x(P )(af + bg))

=
√
n(aCd,x(Pn)(f) + bCd,x(Pn)(g)− aCd,x(P )(f)− bCd,x(P )(g))

= a×
√
n(Cd,x(Pn)− Cd,x(P ))(f) + b×

√
n(Cd,x(Pn)− Cd,x(P ))(g)

and furthermore, if a ∈ Fd,x, then

√
n(Cd,x(Pn)− Cd,x(P ))(a) =

√
n(a− a) = 0

ii. Cd,x(P ) “ignores values outside Yd,x”; i.e. Cd,x(P )(f) = Cd,x(P )(1Yd,x × f).
To see this,

Cd,x(P )(f) (65)

=
E[f(Y )1{D = d} | X = x, Z = d]− E[f(Y )1{D = d} | X = x, Z = 1− d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

=
P (D = d | X = x, Z = d)E[f(Y ) | D = d,X = x, Z = d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

− P (D = d | X = x, Z = 1− d)E[f(Y ) | D = d,X = x, Z = 1− d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
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Since Yd,x is the support of Y | D = d,X = x,

E[f(Y ) | D = d,X = x, Z = z]

= E[f(Y )1{Z = z} | D = d,X = x]/P (Z = z | D = d,X = x)

= E[1{Y ∈ Yd,x}f(Y )1{Z = z} | D = d,X = x]/P (Z = z | D = d,X = x)

= E[1{Y ∈ Yd,x}f(Y ) | D = d,X = x, Z = z]

Along with (65), this implies Cd,m(P )(f) = Cd,m(P )(1Yd,x × f).

iii. Now notice that with probability one the sample is a subset of the support, and
when this is so, Cd,x(Pn) ignores values outside of Yd,x.
Specifically, observe that

Cd,x(Pn)(f) (66)

=

[
1
n

∑n
i=1 1{Di = d,Xi = x}1{Zi = d}f(Yi)

]
/
[

1
n

∑n
i=1 1{Xi = x, Zi = d}

]
Pn(1d,x,d)/Pn(1x,d)− Pn(1d,x,1−d)/Pn(1x,1−d)

−
[

1
n

∑n
i=1 1{Di = d,Xi = x}1{Zi = 1− d}f(Yi)

]
/
[

1
n

∑n
i=1 1{Xi = x, Zi = 1− d}

]
Pn(1d,x,d)/Pn(1x,d)− Pn(1d,x,1−d)/Pn(1x,1−d)

Note that because Yd,x is the support of Y | D = d,X = x, we have that with
probability one, {Yi, Di, Zi, Xi}ni=1 ⊆ S :=

⋃
d,z,x Yd,x × {d} × {z} × {x}. Indeed,

since Yd,x × {d} × {z} × {x} ⊆ R4 are disjoint for each distinct (d, z, x),

P ((Yi, Di, Zi, Xi) ∈ S) = P

(Yi, Di, Zi, Xi) ∈
⋃
d,z,x

Yd,x × {d} × {z} × {x}


=
∑
d,z,x

P (Yi ∈ Yd,x, Di = d,Xi = x, Zi = z)

=
∑
d,z,x

P (Di = d,Xi = x, Zi = z)

× P (Yi ∈ Yd,x, Zi = z | Di = d,Xi = x)︸ ︷︷ ︸
=P (Zi=z|Di=d,Xi=x)

/P (Zi = z | Di = d,Xi = x)

=
∑
d,z,x

P (Di = d,Xi = x, Zi = z) = 1

Since {Yi, Di, Zi, Xi}ni=1 is i.i.d.,

P ({Yi, Di, Zi, Xi}ni=1 ⊆ S) = P

(
n⋂
i=1

{(Yi, Di, Zi, Xi) ∈ S}

)
=

n∏
i=1

P ((Yi, Di, Zi, Xi) ∈ S) = 1

When {Yi, Di, Zi, Xi}ni=1 ⊆ S holds, 1{Di = d,Xi = x} ≤ 1{Yi ∈ Yd,x} = 1Yd,x(Yi)
and thus 1Yd,x(Yi)×1{Di = d,Xi = x} = 1{Di = d,Xi = x}. This and (66) implies
that when {Yi, Di, Zi, Xi}ni=1 ⊆ S holds,

Cd,x(Pn)(f) = Cd,x(Pn)(1Yd,x × f)
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iv. Use the facts established above to see that

P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(F1,x))

= P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(Fd,x) | {Yi, Di, Zi, Xi}ni=1 ⊆ S)

= 1

Lemma B.4 is that `∞Yd,x(F1,x) is closed, so Portmanteau (van der Vaart & Wellner

(1997) theorem 1.3.4) implies

1 = lim sup
n→∞

P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(F1,x)) ≤ P (C ′d,x,P (G) ∈ `∞Yd,x(F1,x))

In summary, we have

1 = P
((
η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

)
∈ RK1 × RK0 × R

)
= P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x))

= P
(
C ′d,x,P (G) ∈ C(Fd,x, L2,P )

)
From which it follows that

1 = P
(
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

)
for each x, and therefore

P (T ′1,P (G) ∈ DTan,Full)

= P

(⋂
x∈X

{
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

})
= 1

This completes the proof.

C.3 Optimal transport, T2({P1|x, P0|x, η1,x, η0,x, sx}x∈X ) = ({θLx , θHx , η1,x, η0,x, sx}x∈X )

The second map applies the directional differentiability of optimal transport shown in appendix

B.2. There are three assumptions in lemma B.2 to verify: strong duality, Donsker conditions, and

completeness. Strong duality is shown by lemmas E.9 and E.13, and the Donsker conditions were

shown by lemma C.4. It remains to verify the completeness assumptions.

C.3.1 Verifying completeness

Lemma C.10 (Completeness of dual problem feasible set in L2 for smooth cost functions). Suppose
Y ⊂ R is compact and c : Y × Y → R is L-Lipschitz. Let Fc, Fcc be given by (14) and (15)
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respectively:

Fc =
{
ϕ : Y → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y)− ϕ(y′)| ≤ L|y − y′|

}
,

Fcc =
{
ψ : Y → R ; −2‖c‖∞ ≤ ψ(y) ≤ 0, |ψ(y)− ψ(y′)| ≤ L|y − y′|

}
,

Further let Φc be defined by (79), and Fd defined by (56). Let L2,P be given by (50), and L2 be
given by (51). Then (F1,x ×F0,x, L2) and its subset Φc ∩ (Fc ×Fcc ) are complete.

Proof. In steps:

1. (Fc, L2,P ) and (Fcc , L2,P ) are complete.

The proof that (Fc, L2,P ) is complete is broken into steps:

(a) Let {ϕn}∞n=1 ⊆ Fc be L2,P -Cauchy. The Lp semimetrics are complete for any probability
distribution (Pollard (2002) section 2.7 and chapter 2 problem [19]), thus there exists ϕ̃
such that L2,P (ϕn, ϕ̃)→ 0. Convergence in L2,P implies convergence almost surely along
a subsequence (Pollard (2002) section 2.8). Thus there exists a subsequence {ϕnk}∞k=1

such that limk→∞ ϕnk(y) = ϕ̃(y) for P -almost every y. Let N1 ⊆ Y be the P -negligible
set where this fails.

(b) Observe that on N c
1 = Y \ N1, ϕ̃ obeys the bounds and Lipschitz continuity of Fc.

Specifically,

−‖c‖∞ ≤ lim
k→∞

−‖c‖∞ ≤ lim
k→∞

ϕnk(y)︸ ︷︷ ︸
ϕ̃(y)

≤ lim
k→∞
‖c‖∞ ≤ ‖c‖∞

Furthermore, for any y, y′ ∈ N c
1 ,

|ϕ̃(y)− ϕ̃(y′)| = | lim
k→∞

ϕnk(y)− lim
k→∞

ϕnk(y′)| = lim
k→∞
|ϕnk(y)− ϕnk(y′)|

≤ lim
k→∞

L|y − y′| = L|y − y′|

(c) Now define functions ϕ̄, ϕ : Y → R with

ϕ̄(y1) = sup
y′1∈Nc

1

{ϕ̃(y′1)− L|y1 − y′1|}, ϕ(y1) = max{ϕ̄(y1),−‖c‖∞}

Then L2,P (ϕn, ϕ)→ 0 and ϕ ∈ Fc, which shows (Fc, L2,P ) is complete.

i. L2,P (ϕn, ϕ) → 0 follows from ϕ(y) = ϕ̃(y) for all y ∈ N c
1 . To see this, let y ∈ N c

1 .
Since ϕ̃ is L-Lipschitz on N c

1 , it follows that for any y′ ∈ N c
1 ,

ϕ̃(y′)− L|y − y′| ≤ ϕ̃(y)

and thus ϕ̄(y) = ϕ̃(y). This implies ϕ̄(y) = ϕ̃(y) ≥ −‖c‖∞, and thus ϕ(y) = ϕ̄(y) =
ϕ̃(y). Thus ϕ(y) = ϕ̃(y) for P -almost all y, implying L2,P (ϕ̃, ϕ) = 0 and thus
L2,P (ϕn, ϕ)→ 0.

ii. To see that ϕ ∈ Fc, first notice that ϕ̄(y) = supy′∈Nc
1
{ϕ̃(y′)−L|y−y′|} ≤ supy′∈Nc

1
ϕ̃(y) ≤

‖c‖∞, and hence ϕ̄ obeys the upper bound for Fc. It then follows easily that
ϕ(y) = max{ϕ̄(y),−‖c‖∞} obeys both the upper and lower bound. Next notice
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that ϕ̄ is L-Lipschitz on all of Y:

ϕ̄(y)− ϕ̄(y′) = = sup
ỹ∈Nc

1

{ϕ̃(ỹ)− L|y − ỹ|} − sup
ỹ′∈Nc

1

{ϕ̃(ỹ′)− L|y′ − ỹ′|}

≤ sup
ỹ∈Nc

1

{ϕ̃(ỹ)− L|y − ỹ| −
(
ϕ̃(ỹ)− L|y′ − ỹ|

)
}

= sup
ỹ∈Nc

1

L
(
|y′ − ỹ| − |y − ỹ|

)
≤ L|y − y′|

where the last inequality follows from the reverse triangle inequality. It follows that
ϕ(y1) = max{ϕ̄(y1),−‖c‖∞} is also L-Lipschitz, and thus ϕ ∈ Fc.

2. Very similar steps show that (Fcc , L2,P ) is complete; the only substantial changes are replacing
the lower bounds with −2‖c‖ and the upper bounds with 0.

3. Note that since (Fc×Fcc , L2) is the product space of (Fc, L2,P ) and (Fcc , L2,P ), it follows that
(Fc ×Fcc , L2) is complete.

4. Φc ∩ (Fc ×Fcc ) is complete.

To see that Φc∩ (Fc×Fcc ) is complete, let {(ϕn, ψn)}∞n=1 ⊆ Φc∩ (Fc×Fcc ) be L2-Cauchy, and
follow the same steps shown above to define (ϕ,ψ) ∈ Fc×Fcc such that L2((ϕn, ψn), (ϕ,ψ))→
0. It remains to show that ϕ(y1) + ψ(y0) ≤ c(y1, y0) for all (y1, y0) ∈ Y × Y ⊆ R2.

Since c is L-Lipschitz,

c(y1, y0)− c(y′1, y0) ≥ −L‖(y1, y0)− (y′1, y
′
0)‖ ≥ −L|y1 − y′1| − L|y0 − y′0|

which implies c(y′1, y
′
0)− L|y1 − y′1| − L|y0 − y′0| ≤ c(y1, y0). Thus

ϕ̄(y1) + ϕ̄(y0) = sup
y′1∈Nc

1

{ϕ̃(y′1)− L|y1 − y′1|}+ sup
y′0∈Nc

0

{ψ̃(y′0)− L|y0 − y′0|}

= sup
(y′1,y

′
0)∈Nc

1×Nc
0

{
ϕ̃(y′1) + ψ̃(y′0)− L|y1 − y′1| − L|y0 − y′0|

}
≤ sup

(y′1,y
′
0)∈Nc

1×Nc
0

{
c(y′1, y

′
0)− L|y1 − y′1| − L|y0 − y′0|

}
≤ sup

(y′1,y
′
0)∈Nc

1×Nc
0

{c(y1, y0)} = c(y1, y0)

Finally,

ϕ(y1) + ψ(y0) = max{ϕ̄(y1),−‖c‖∞}+ max{ψ̄(y0),−2‖c‖}
= max{ϕ̄(y1) + ϕ̄(y0), ϕ̄(y1)− 2‖c‖∞,−‖c‖∞ + ψ̄(y0),−‖c‖∞ − 2‖c‖}
≤ max{c(y1, y0),−‖c‖∞,−‖c‖∞,−3‖c‖∞}
≤ c(y1, y0)

where the first inequality follows from ϕ̄(y1) ≤ ‖c‖∞ and ψ̄(y0) ≤ 0.

5. (F1,x ×F0,x, L2) is complete.

As this is the product space of (F1,x, L2,P ) and (F0,x, L2,P ), it suffices to show these individual
spaces are complete.
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Now recall that Fd,x is defined by (56):

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . ,K1

}
F̃0 =

{
f : Y → R ; f = ψ for some ψ ∈ Fcc , or f = η

(k)
0 for some k = 1, . . . ,K0

}
Fd,x =

{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}
Recall that the union of a finite number of complete sets is complete. Since (Fc, L2,P ) and
Fcc , L2,P ) are complete and any finite set is complete, F̃d is complete. Next recognize that

Fd,x = F̃d ∪
{
1Yd,x × g ; g ∈ F̃d

}
is the union of a finite number of sets, and thus it suffices

to show
{
1Yd,x × g ; g ∈ F̃d

}
is complete.

Let {1Yd,x × gn}∞n=1 ⊆
{
1Yd,x × g ; g ∈ F̃d

}
be L2,P -Cauchy. Lemma C.4 shows that Fd,x is

Donsker and supf∈Fd,x |P (f)| <∞, which implies (Fd,x, L2,P ) is totally bounded (see van der

Vaart & Wellner (1997) problem 2.1.2.). Since F̃d is a complete subset of a totally bounded
set, it is compact. Thus {gn}∞n=1 ⊆ F̃d is a sequence in a compact semimetric space, and
therefore has a convergent subsequence {gnk}∞k=1. Let g ∈ F̃d be its limit, and notice that

0 ≤ L2,P (1Yd,x × gnk ,1Yd,x × g) =
√
P ((1Yd,x × gnk − 1Yd,x × g)2)

≤
√
P ((gnk − g)2)

= L2,P (gnk , g)→ 0

and thus 1Yd,x×ϕnk → 1Yd,xg. It follows that 1Yd,x×ϕn → 1Yd,xg, and thus
{
1Yd,x × g ; g ∈ F̃d

}
is complete.

This completes the proof.

Lemma C.11 (Completeness of dual problem feasible set in L2 for indicator cost functions).
Let Y ⊆ R, C ⊆ Y × Y be nonempty, open, and convex, and let c : Y × Y → R be given by
c(y1, y0) = 1C(y1, y0) = 1{(y1, y0) ∈ C}. Let Fc, Fcc be given by (16) and (17) respectively:

Fc = {ϕ : Y → R ; ϕ(y1) = 1I(y1) for some interval I} ,
Fcc = {ψ : Y → R ; ψ(y0) = −1Ic(y0) for some interval I} ,

Further let Φc be defined by (79), and Fd,x defined by (56). Let L2,P be given by (50), and L2 be
given by (51). Then (F1,x ×F0,x, L2) and its subset Φc ∩ (Fc ×Fcc ) are complete.

Proof. The proof is similar in structure to that of lemma C.10.

1. (Fc, L2,P ) is complete.

Let {ϕn}∞n=1 ⊆ Fc be L2,P -Cauchy. Note that ϕn(y) = 1In(y) for some interval In. Just as
in the proof of lemma C.10, there exists ϕ̃ such that L2,P (ϕn, ϕ̃) → 0, and a subsequence
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{ϕnk}∞k=1 such that limk→∞ ϕnk(y) = ϕ̃(y) for P -almost every y. Let N ⊂ Y be the P -
negligible set where this convergence fails.

Let y ∈ N c, and notice that ϕnk(y) = 1Ink
(y) ∈ {0, 1} for all k and {ϕnk(y)}∞k=1 converging

in R implies that ϕnk(y) is eventually constant as k grows. This implies ϕ̃(y) ∈ {0, 1}, and
hence for some set A ⊂ Y,

ϕ̃(y) = 1A(y) for all y ∈ N c

We will show that for some interval I, A∩N c = I∩N c. Let y1, y2, y3 ∈ N c satisfy y1 < y2 < y3

and y1, y3 ∈ A, but be otherwise arbitrary. It suffices to show that y2 ∈ A; we can then
define I to be the interval with endpoints inf A and supA (including the lower endpoint if
inf A = minA > −∞, and including the upper endpoint if supA = maxA < ∞), and define
the function ϕ : Y1 → R with ϕ(y1) = 1I(y1).14

Notice that limk→∞ 1Ink (y3) = 1A(y3) = 1 and limk→∞ 1Ink (y3) = 1A(y3) = 1 implies that
1Ink

(y1) and 1Ink (y3) are eventually constant and equal to 1, i.e. there exists K1,K3 ∈ N
such that

y1 ∈ Ink for all k ≥ K1, and y3 ∈ Ink for all k ≥ K3

Since Ink is an interval, this implies

y2 ∈ Ink for all k ≥ max{K1,K3}

i.e. 1Ink (y2) = 1 for all such k, and therefore 1A(y2) = limk→∞ 1An(y2) = 1. Thus y2 ∈ A.

It follows that ϕ̃(y) = ϕ(y) = 1I(y) for all y ∈ N c. Thus L2,P (ϕ̃, ϕ) = 0, and L2,P (ϕn, ϕ)→ 0.
Since ϕ ∈ Fc, this completes the proof that (Fc, L2,P ) is complete.

2. (Fcc , L2,P ) is complete.

The argument is similar. Let {ψn}∞n=1 ⊆ Fc be L2,P -Cauchy. Note that ψn(y) = 1Icn(y) for

some interval In. There exists ψ̃ such that L2,P (ψn, ψ̃) → 0, and a subsequence {ψnk}∞k=1

such that limk→∞ ψnk(y) = ψ̃(y) for P -almost every y. Let N ⊂ Y be the P -negligible set
where this convergence fails.

Since ψnk(y) = 1Icnk
(y) ∈ {0, 1} for all k and y, and limk→∞ ψnk(y) = ψ̃(y) for all y ∈ N c, we

have ψ̃(y) ∈ {0, 1} for all such y and thus for some set A ⊆ Y,

ψ̃(y) = 1Ac(y) for all y ∈ N c

Once again, it suffices to show A∩N c = I ∩N c for some interval I. Consider y1, y2, y3 ∈ N c,
y1 < y2 < y3, with y1, y3 ∈ A. limk→∞ ψnk(y1) = ψ̃(y1) = 0 and limk→∞ ψnk(y3) = ψ̃(y3) = 0
implies that ψnk(y1) = 1Icnk

(y1) and ψnk(y3) = 1Icnk
(y3) are eventually constant and equal to

0, i.e. for some K1,K3 ∈ N,

y1 ∈ Ink for all k ≥ K1, y3 ∈ Ink for all k ≥ K3

14Explicitly, I is defined as follows: (a) I = (`, u) if neither ` = inf A nor u = supA is attained in R (b) I = [`, u)
if ` = inf A = minA, but u = supA is not attained in R (c) I = (`, u] if ` = inf A is not attained in R, but
u = supA = maxA (d) I = [`, u] if both ` = inf A = minA and u = supA = maxA.
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since Ink is an interval for every k, this implies

y2 ∈ Ink for all k ≥ max{K1,K3}

thus ψ̃(y2) = limk→∞ ψnk(y2) = 0. It follows that A ∩ N c = I ∩ N c, where I is the interval
defined by endpoints inf A and supA, which are included if attained and finite. Define ψ(y) =
1Ic(y) and notice ψ ∈ Fcc . We have ψ(y) = ψ̃(y) for all y ∈ N c and hence L2,P (ψ̃, ψ) = 0.
Thus L2,P (ψn, ψ)→ 0, showing (Fcc , L2,P ) is complete.

3. Note that (Fc×Fcc , L2) is the product space of the complete spaces (Fc, L2,P ) and (Fcc , L2,P ),
and so is complete.

4. We next show Φc ∩ (Fc ×Fcc ) = {(ϕ,ψ) ∈ Fc ×Fcc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} is complete.

Let {(ϕn, ψn)}∞n=1 ⊆ Φc∩ (Fc×Fcc ) be L2-Cauchy, and let (ϕ̃, ψ̃) be a limit in Fc×Fcc . Since
L2,P (ϕn, ϕ̃) → 0 there exists a subsequence {(ϕnk , ψnk)}∞k=1 such that limk→∞ ϕnk(y1) =
ϕ̃(y1) for P -almost all y1. Let N1 be the negligible set where this fails. Furthermore,
L2,P (ψnk , ψ̃) → 0 as k → ∞ and so there is a further subsequence {(ϕnkj , ψnkj )}

∞
j=1 such

that limj→∞ ψnkj (y0) = ψ̃(y0) for P -almost all y0. Let N0 be the negligible set where this

fails. It is then clear that if (y1, y0) ∈ N c
1 ×N c

0 , then

ϕ̃(y1) + ψ̃(y0) = lim
j→∞
{ϕnkj (y1) + ψnkj (y0)} ≤ lim

j→∞
c(y1, y0) = 1C(y1, y0) (67)

Note that ϕ̃ = 1Iϕ̃ , and ψ̃ = −1Ic
ψ̃

for some intervals Iϕ̃ and Iψ̃. Let

`1 = inf Iϕ̃ ∩N c
1 , u1 = sup Iϕ̃ ∩N c

1 , `0 = inf Iψ̃ ∩N
c
0 , u0 = sup Iψ̃ ∩N

c
0

and define ϕ = 1Iϕ where Iϕ is the interval with endpoints `1, u1 (included if the inf/sup are
finite and attained), and ψ = −1Icψ where Icψ is the interval with endpoints `0, u0 (included

if the inf/sup are finite and attained). Notice that Iϕ = Iϕ̃, P -almost surely and Iψ = Iψ̃,
P -almost surely.

Notice that for (y1, y0) ∈ (N c
1×N c

0)c to satisfy ϕ(y1)+ψ(y0) = 1Iϕ(y1)−1Icψ(y0) > 1C(y1, y0),

it would have to be the case that (y1, y0) ∈ (Iϕ̃ × Iψ̃) ∩ (N c
1 × N c

0)c \ C. Let (y1, y0) ∈
(Iϕ × Iψ) ∩ (N c

1 × N c
0)c, and note that there exists y`1, y

u
1 ∈ Iϕ ∩ N c

1 with y`1 ≤ y1 ≤ yu1 and
y`0, y

u
0 ∈ Iψ ∩N c

0 with y`0 ≤ y0 ≤ yu0 . Notice that [y`1, y
u
1 ] × [y`0, y

u
0 ] ⊆ C, because C is convex

and (67) holds for the “corners”: (`1, `0), (`1, u0), (u1, `0), (u1, u0) ∈ (Iϕ × Iψ) ∩ (N c
1 × N c

0).
Thus (Iϕ̃ × Iψ̃) ∩ (N c

1 × N c
0)c \ C = ∅, showing that ϕ(y1) + ψ(y0) ≤ c(y1, y0) holds for all

(y1, y0) ∈ Y1 × Y0. This shows Φc ∩ (Fc ×Fcc ) is complete.

5. The argument thet (F1,x ×F0,x, L2) is complete is identical to the argument given in step 5
of the proof of lemma C.10.

This completes the proof.

C.3.2 Differentiability of T2

We first apply lemma B.2 to show show that θL(·) and θH(·), given by either (19) or (20) depending

on the function c, are Hadamard differentiable.
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Lemma C.12. Suppose assumptions 1, 2, and 3 hold. Then θL and θH given by (19) or (20) are
Hadamard directionally differentiable at (P1|x, P0|x) tangentially to C(F1,x, L2,P ) × C(F0,x, L2,P ).
The argmax sets

ΨcL(P1|x, P0|x) = arg max
(ϕ,ψ)∈ΦcL∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

ΨcH (P1|x, P0|x) = arg max
(ϕ,ψ)∈ΦcH∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

are nonempty, and the derivatives θL′(P1|x,P0|x), θ
H′
(P1|x,P0|x) : C(F1,x, L2,P ) × C(F0,x, L2,P ) → R are

given by

θL′(P1|x,P0|x)(H1, H0) = sup
(ϕ,ψ)∈ΨcL (P1|x,P0|x)

H1(ϕ) +H0(ψ) (68)

θH′(P1|x,P0|x)(H1, H0) = −

[
sup

(ϕ,ψ)∈ΨcH (P1|x,P0|x)
H1(ϕ) +H0(ψ)

]
(69)

If assumption 4 also holds, then θL and θH are fully Hadamard differentiable at (P1|x, P0|x)
tangentially to

DTan,Full,x =
(
`∞Y1,x

(F1,x)× `∞Y0,x
(F0,x)

)
∩
(
C(F1,x, L2,P )× C(F0,x, L2,P )

)
with the derivatives θL′(P1|x,P0|x), θ

H′
(P1|x,P0|x) : DTan,Full,x → R also given by (68) and (69).

Proof. We apply lemma B.2. It is clear from inspection that the cost functions cL and cH are lower
semicontinuous, the sets Fd,x defined by (56) consists of measurable functions mapping Y to R, and
that the subsets Fc and Fcc given by (14) and (15), or by (16) and (17), are universally bounded.
Moreover,

1. Strong duality holds.

(i) If assumption 2 (i) holds, then lemma E.9 shows that strong duality holds.

(ii) If assumption 2 (ii) holds, then lemma E.13 shows that strong duality holds.

2. Assumption 1 implies P dominates Pd|x with bounded densities
dPd|x
dP . Indeed,

EPd|x [f(Yd)] =
EP [f(Y )1{D = d} | X = x, Z = d]− EP [f(Y )1{D = d} | X = x, Z = 1− d]

P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)

= EP

[
f(Y )

1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d
pd,x,d/px,d − pd,x,1−d/px,1−d

]
= EP

[
f(Y )E

[
1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d
| Y
]]

Notice that
dPd|x
dP (Y ) = EP

[
1d,x,d(D,X,Z)/px,d−1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d−pd,x,1−d/px,1−d | Y
]

must be nonnegative

P -almost surely; if the set A =
{
y ;

dPd|x
dP (y) < 0

}
was P -non-negligible, the displays above

would imply the contradiction P (Yd ∈ A | D1 > D0, X = x) < 0. Moreover, it is bounded by

Kd,x =
1/px,d

pd,x,d/px,d−pd,x,1−d/px,1−d
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3. Lemma C.4 shows that under assumptions 1, 2, and 3, Fd,x is P -Donsker and supf∈Fd,x |P (f)| <
∞ for d = 1, 0, and

4. The set (F1 ×F0, L2) and its subset Φc ∩ (Fc ×Fcc ) are complete.

(i) If assumption 2 (i) holds, then lemma C.10 shows these sets are complete.

(ii) If assumption 2 (ii) holds, then lemma C.11 shows these sets are complete.

It follows from the chain rule that θL and θH are Hadamard directionally differentiable with the
claimed directional derivatives.

Now suppose assumptions 1, 2, 3, and 4 hold. Lemma B.5 implies θL and θH are fully Hadamard
differentiable at (P1|x, P0|x) tangentially to

DT,Full,x =
(
`∞Y1,x

(F1,x)× `∞Y0,x
(F0,x

)
∩
(
C(F1,x, L2,P )× C(F0,x, L2,P )

)
with derivatives given by the same expressions.

We can now show the differentiability properties of T2.

Lemma C.13 (T2 is Hadamard differentiable). Let DTan and DTan,Full be given by

DTan =
M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R

DTan,Full =
M∏
m=1

(
`∞Y1,xm

(F1,xm)× `∞Y0,xm
(F0,xm)

)
∩
(
C(F1,xm , L2,P )× C(F0,xm , L2,P )

)
× RK1 × RK0 × R

and define

T2 :

M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R→
M∏
m=1

R× R× RK1 × RK0 × R,

T2({P1|x, P0|x, η1,x, η0,x, sx}x∈X ) =
(
{θL(P1|x, P0|x), θH(P1|x, P0|x), η1,x, η0,x, sx}x∈X

)
Under assumptions 1, 2, and 3, T2 is Hadamard directionally differentiable at

T1(P ) = ({P1|x, P0|x, sx, η1,x, η0,x}x∈X ) tangentially to DTan, with derivative

T ′2,T1(P ) : DTan →
M∏
m=1

R× R× RK1 × RK0 × R

T ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
θL′(P1|x,P0|x)(H1,x, H0,x), θH′(P1|x,P0|x)(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)
If assumption 4 also holds, then T2 is fully Hadamard differentiable at T1(P ) tangentially to

DTan,Full, with derivative T2,T1(P ) : DTan,Full →
∏M
m=1 R× R× RK1 × RK0 × R given by the same

expression.
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Proof. Lemma C.12 shows that under assumptions 1, 2, and 3, θL(·) and θH(·) are Hadamard
directionally differentiable at (P1|x, P0|x) tangentially to C(F1,x, L2,P )×C(F0,x, L2,P ) for each x ∈ X .
If assumption 4 also holds, lemma C.12 shows these derivatives are linear on the subspace DTan,Full,
and hence θL(·) and θH(·) are fully Hadamard differentiable tangentially to DTan,Full. The other
coordinates are the identity mapping, which is fully Hadamard differentiable. Apply lemma F.5 to
obtain the result.

C.4 Expectations, T3({θLx , θHx , η1,x, η0,x, sx}x∈X ) = (θL, θH , η)

Lemma C.14. Define

T3 :
M∏
m=1

R× R× RK1 × RK0 × R→ R× R× RK1 × RK0

T3({θLx , θHx , η1,x, η0,x, sx}x∈X ) =

(∑
x∈X

sxθ
L
x ,
∑
x∈X

sxθ
H
x ,
∑
x∈X

sxη1,x,
∑
x∈X

sxη0,x

)

T3 is fully (Hadamard) differentiable at any V = ({θLx , θHx , η1,x, η0,x, sx}x∈X ) ∈
∏M
m=1 R × R ×

R× RK1 × RK0 tangentially to
∏M
m=1 R× R× RK1 × RK0 × R with derivative

T ′3,V :
M∏
m=1

R× R× RK1 × RK0 × R→ R× R× RK1 × RK0

T ′3,V ({hLx , hHx , hη1,x, hη0,x, hs,x}x∈X )

=

(∑
x∈X

sxh
L
x + hs,xθ

L(x),
∑
x∈X

sxh
H
x + hs,xθ

H(x),
∑
x∈X

sxhη1,x + hs,xη1,x,
∑
x∈X

sxhη0,x + hs,xη0,x

)

Proof. The inner product

IP : RM × RM → R, IP (r1, r2) = 〈r1, r2〉 =

M∑
m=1

r
(m)
1 r

(m)
2

is fully Hadamard differentiable at any (r1, r2) ∈ RM×RM tangentially to RM×RM with derivative

IP ′(r1,r2) : RM × RM → R,

IP ′(r1,r2)(h1, h2) = 〈r1, h2〉+ 〈h1, r2〉 =
M∑
m=1

r
(m)
1 h

(m)
2 + h

(m)
1 r

(m)
2

Apply lemma F.5 to obtain the result.
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C.5 Optimization over t ∈ [θL, θH ]: T4(θ
L, θH , η) = (γL, γH)

Lemma C.15. Let gL, gH : R× R× RK1 × RK0 → R be as defined in assumption 3:

gL(θL, θH , η1, η0) = inf
t∈[θL,θH ]

g(t, η1, η0), gH(θL, θH , η1, η0) = sup
t∈[θL,θH ]

g(t, η1, η0)

Define

T4 : R× R× RK1 × RK0 → R× R
T4(θL, θH , η1, η0) =

(
gL(θL, θH , η1, η0), gH(θL, θH , η1, η0)

)
Under assumption 3, gL and gH are continuously differentiable at (θL, θH , η1, η0) = T3(T2(T1(P )))

with gradients

∇gL = ∇gL(θL, θH , η1, η0) ∈ R2+K1+K0 , ∇gH = ∇gH(θL, θH , η1, η0) ∈ R2+K1+K0

Therefore T4 is fully Hadamard differentiable at (θL, θH , η1, η0) tangentially to R×R×RK1 ×RK0,
with derivative

T ′4,T3(T2(T1(P ))) : R× R× RK1 × RK0 → R× R

T ′4,T3(T2(T1(P )))(h
L, hH , hη1 , hη0)

=
(〈
∇gL, (hL, hH , hη1 , hη0)

〉
,
〈
∇gH , (hL, hH , hη1 , hη0)

〉)
Proof. Assumption 3 (iii) is that gL and gH are continuously differentiable. The result follows.

Remark C.1. This remark discusses the derivatives of gL and gH . In particular, note that even if
arg mint∈[θL,θH ] g(t, η) is within (θL, θH), the derivative of gL and gH are unlikely to be zero because
the derivatives with respect to η will not be zero.

Consider gH(θL, θH , η) = supt∈[θL,θH ] g(t, η). The maximization problem has Lagrangian

L(t, λ, θL, θH , η) = g(t, η) + λL(t− θL) + λH(θH − t)

where λ = (λL, λH) are Lagrange multipliers. Let gθ(t, η) = ∂g
∂θ (t, η). Suppose there is unique

solution (θ∗, λ∗). The necessary KKT conditions imply that

gθ(θ
∗, η) + λL∗ − λH∗ = 0

θ∗ − θL∗ ≥ 0 w.e. if λL∗ > 0

θH
∗ − θ∗ ≥ 0 w.e. if λH∗ > 0

λL∗, λH∗ ≥ 0

Notice that at most one of either θ∗ = θL or θ∗ = θH is true. If θ∗ = θL, then λL > 0 and
λH = 0, and the first KKT implies −gθ(θL, η) = λL. Similarly, if θ∗ = θH is true then λL = 0 and
gθ(θ

H , η) = λH .
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Now use assumption 3 (iii) to apply the envelope theorem, finding that

∇gL(θL, θH , η)ᵀ =
(
∂L
∂θL

(θ∗, λ∗, θL, θH , η) ∂L
∂θH

(θ∗, λ∗, θL, θH , η) ∂L
∂η (θ∗, λ∗, θL, θH , η)

)
=
(
−λL∗ λH∗ gη(θ

∗, η)
)

The linearization of gL at (θL, θH , η) is the function gL
′

(θL,θH ,η)
: R× R× Rd1+d2 → R given by

gL
′

(θL,θH ,η)(hL, hH , hη) = ∇gL(θL, θH , η)ᵀh =


gθ(θ

∗, η)hL + gη(θ
∗, η)ᵀhη if θ∗ = θL

gθ(θ
∗, η)hH + gη(θ

∗, η)ᵀhη if θ∗ = θH

gη(θ
∗, η)ᵀhη if θ∗ ∈ (θL, θH)

=
(
gθ(θ

∗, η)1{θ∗ = θL} gθ(θ
∗, η)1{θ∗ = θH} gη(θ

∗, η)ᵀ
)hLhH

hη


where gη(t, η) = ∂g

∂η (t, η). In particular, notice that the first order condition gθ(θ
∗, η) = 0, which

holds true when θ∗ ∈ (0, 1), does not imply this linearization is the zero map, as long as gη(θ
∗, η)

is not zero.

C.6 The map T (P ) = (γL, γH), consistency, and weak convergence

Lemma C.16. Let T1, T2, T3, and T4 be as defined in lemmas C.7, C.13, C.14, and C.15 respec-
tively. Let ({

P̂1|x, P̂0|x, η̂1,x, η̂0,x, ŝx

}
x∈X

)
= T1(Pn)(

{θ̂Lx , θ̂Hx , η̂1,x, η̂0,x, ŝx}x∈X
)

= T2(T1(Pn))

(θ̂L, θ̂H , η̂) = T3(T2(T1(Pn))),

(γ̂L, γ̂H) = T4(T3(T2(T1(Pn))))

be the empirical analogue estimators. If assumptions 1, 2, and 3 hold, then each of these estimators
are consistent.

Proof. Lemmas C.7, C.13, C.14, and C.15 show that T1, T2, T3, and T4 are Hadamard (direction-
ally) differentiable at P , T1(P ), T2(T1(P )), and T3(T2(T1(P ))) respectively, tangentially to sets
that include zero. It follows that these functions are continuous at P , T1(P ), T2(T1(P )), and

T3(T2(T1(P ))) respectively.15 Lemma C.5 implies that Pn
p→ P in `∞(F), so it follows from the

15For normed spaces D, E, φ : Dφ ⊆ D → E is continuous at θ ∈ Dφ if and only if for every sequence {θn}∞n=1 ⊆
Dφ \{θ} with θn → θ, ‖φ(θn)−φ(θ)‖E → 0. For such a sequence {θn}∞n=1, let tn = ‖θn− θ‖1/2D and notice that tn ↓ 0,
hn := θn−θ

tn
→ 0 ∈ D0, and θ + tnhn = θn ∈ Dφ for all n. The definition of Hadamard directional differentiability

then implies ‖φ(θ + tnhn)− φ(θ)− tnφ′θ(h)‖E → 0, while the reverse traingle inequality implies

‖φ(θ + tnhn)− φ(θ)− tnφ′θ(h)‖E ≥
∣∣‖φ(θ + tnhn)− φ(θ)‖E − tn‖φ′θ(h)‖E

∣∣ ≥ ‖φ(θ + tnhn)− φ(θ)‖E − tn‖φ′θ(h)‖E
=⇒ 0 ≤ ‖φ(θ + tnhn)− φ(θ)‖E ≤ ‖φ(θ + tnhn)− φ(θ)− tnφ′θ(h)‖E + tn‖φ′θ(h)‖E → 0

showing continuity at θ.
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continuous mapping theorem that

T1(Pn)
p→ T1(P )

T2(T1(Pn))
p→ T2(T1(P ))

T3(T2(T1(Pn)))
p→ T3(T2(T1(P )))

T4(T3(T2(T1(Pn))))
p→ T4(T3(T2(T1(P ))))

In other words, the estimates are all consistent in their respective spaces.

Lemma C.17 (T is Hadamard directionally differentiable). Let DC be defined by (59), and

T : DC → R2, T (G) = T4(T3(T2(T1(G))))

If assumptions 1, 2, 3 holds, then T is Hadamard directionally differentiable at P tangentially to
C(F , L2,P ) with derivative given by

T ′P : C(F , L2,P )→ R2, T ′P (G) = T ′4,T3(T2(T1(P )))(T
′
3,T2(T1(P ))(T

′
2,T1(P )(T

′
1,P (G))))

If assumption 4 also holds, then T is fully Hadamard differentiable at P tangentially to the support
of G as defined in lemma C.5.

Proof. Lemma C.7 shows that T1 is fully Hadamard differentiable at any point in DC tangentially
to `∞(F). Lemma C.13 shows that under assumptions 1, 2, and 3, T2 is Hadamard directionally
differentiable at T1(P ) tangentially to

DTan =
M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R

Lemma C.8 implies that if H ∈ C(F , L2,P ), then T ′1,P (H) ∈ DTan. It follows from the chain rule
(lemma F.4) that T2 ◦ T1 is Hadamard directionally differentiable at P tangentially to C(F , L2,P ).
Lemma C.14 shows T3 is fully differentiable at any point in its domain tangentially to the entire
relevant space, and lemma C.15 shows T4 is fully differentiable at T3(T2(T1(P ))) tangentially to the
entire relevant space. The chain rule thus implies the first claim: under assumptions 1, 2, and 3,
T = T4 ◦ T3 ◦ T2 ◦ T1 is Hadamard directionally differentiable at P tangentially to C(F , L2,P ) with
the claimed derivative.

If assumption 4 also holds, lemma C.13 implies that T2 is fully differentiable at T1(P ) tan-
gentially to DTan,Full. Lemma C.9 shows the support of T ′1,P (G) is contained within DTan,Full.
It follows that T ′P (·) = T ′4,T3(T2(T1(P )))(T

′
3,T2(T1(P ))(T

′
2,T1(P )(T

′
1,P (·)))) is linear on the support of G,

and hence Fang & Santos (2019) proposition 2.1 implies T is fully Hadamard differentiable at P
tangentially to the support of G.

Lemma 5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(y1, y0) that is continuously differentiable, and

(ii) for each (d, x), the support of Pd|x is Yd,x, which is a bounded interval.
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Then assumption 4 holds.

Proof. Note that both cL(y1, y0) = c(y1, y0) and cH(y1, y0) = −c(y1, y0) are continuously differen-
tiable. Moreover, since the support of Pd|x is Yd,x which is a bounded interval, the support can be

written as [y`d,x, y
u
d,x]. So for any x ∈ X and either c ∈ {cL, cH}, lemma B.3 shows that for any

(ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1|x, P0|x), there exists s ∈ R such that for all (y1, y0) ∈ Y1,x × Y0,x

ϕ1(y1)− ϕ2(y1) = s, ψ1(y0)− ψ2(y0) = −s

and thus

1Y1,x × ϕ1 = 1Y1,x × (ϕ2 + s), P -a.s. and 1Y0,x × ψ1 = 1Y0,x × (ψ2 − s), P -a.s..

Therefore assumption 4 holds.

Theorem 5.2. Suppose assumptions 1, 2, and 3 hold, and let G be the weak limit of
√
n(Pn − P )

in `∞(F). Then T is Hadamard directionally differentiable at P tangentially to the support of G,
and

√
n((γ̂L, γ̂H)− (γL, γH)) =

√
n(T (Pn)− T (P ))

L→ T ′P (G)

If assumption 4 also holds, then T ′P is linear on the support of G and T ′P (G) is bivariate normal.

Proof. The result is an application of the functional delta method (see Fang & Santos (2019)
theorem 2.1) and lemma C.17.

Indeed, `∞(F) and R2 are Banach spaces, and under assumptions 1, 2, and 3 lemma C.17 shows
T is Hadamard directionally differentiable at P tangentially to C(F , L2,P ). Lemma C.5 shows that
√
n(Pn − P )

L→ G in `∞(F), where G is tight and supported in C(F , L2,P ). Fang & Santos (2019)

theorem 2.1 gives the result that
√
n(T (Pn)− T (P ))

L→ T ′P (G).
If assumption 4 holds as well as assumptions 1, 2, and 3, then lemma C.17 shows that T is fully

differentiable on the support of G. Since G is Gaussian and T ′P is continuous and linear on the
support of G, T ′P (G) ∈ R2 is Gaussian.
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D Appendix: inference

D.1 Bootstrap

Lemma D.1. Suppose assumptions 1, 2, and 3 are satisfied. Let P∗n be given by definition 5.1 or
5.2. Then Fang & Santos (2019) assumption 3 is satisfied:

(i) P∗n is a function of {Yi, Di, Zi, Xi,Wi}ni=1, with {Wi}ni=1 independent of {Yi, Di, Zi, Xi}ni=1.

(ii) P∗n satisfies supf∈BL1
|E [f(

√
n(P∗n − Pn)) | {Yi, Di, Zi, Xi}ni=1]− E[f(G)]| = op(1).

(iii)
√
n(P∗n − Pn) is asymptotically measurable (jointly in {Yi, Di, Zi, Xi,Wi}ni=1).

(iv) f(
√
n(P∗n−Pn) is a measurable function of {Wi}ni=1 outer almost surely in {{Yi, Di, Zi, Xi}ni=1

for any continuous and bounded real-valued f .

Proof. Note that assumption 3(i) is satisfied by construction. van der Vaart & Wellner (1997)
example 3.6.9, 3.6.10, and theorem 3.6.13 implies assumpion 3(ii) holds:

sup
f∈BL1

∣∣E [f(
√
n(P∗n − Pn)) | {Yi, Di, Zi, Xi}ni=1

]
− E[f(G)]

∣∣ P ∗→ 0

and further that
E
[
f(
√
n(P∗n − Pn))∗

]
− E

[
f(
√
n(P∗n − Pn))∗

]
= op(1)

for any f ∈ BL1, where f(
√
n(P∗n − Pn))∗ and f(

√
n(P∗n − Pn))∗ denote the minimal measurable

majorant and maximal measurable minorant of f(
√
n(P∗n − Pn)), respectively. Note that for any

continuous and bounded f , f(
√
n(P∗n − Pn)) is continuous in {Wi}ni=1, and is hence measurable

satisfying Fang & Santos (2019) assumption 3(iv). Fang & Santos (2019) lemma S.3.9 then implies
assumption 3(iii) is satisfied as well.

Theorem 5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P∗n be given by definition 5.1 or
5.2. Then conditional on {Yi, Di, Zi, Xi}ni=1,

√
n(T (P∗n)− T (Pn))

L→ T ′P (G)

in outer probability.

Proof. By application of Fang & Santos (2019) theorem 3.1. There are three numbered assumptions:

1. Fang & Santos (2019) assumption 1 is satisfied; `∞(F) and R2 are indeed Banach spaces, and
lemma C.17 shows that under this paper’s assumptions 1, 2, and 3, the map T is Hadamard
directionally differentiable at P tangentially to C(F , L2,P ).

2. Fang & Santos (2019) assumption 2 is satisfied; lemma C.5 shows that
√
n(Pn − P )

L→ G in
`∞(F), where G is tight and supported in C(F , L2,P ).

3. Lemma D.1 shows that Fang & Santos (2019) assumption 3 is satisfied.
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Finally, note that G is Gaussian and mean zero; it follows that its support is a vector subspace
of `∞(F). Thus Fang & Santos (2019) theorem 3.1 implies T is (fully) Hadamard differentiable
tangentially to the support of G if and only if

sup
f∈BL1

∣∣E [f (√n(T (P∗n)− T (Pn))
)
| {Yi, Di, Zi, Xi}ni=1

]
− E

[
f(T ′P (G))

]∣∣ = op(1)

Since lemma C.17 shows that under assumptions 1, 2, 3, and 4, T is fully Hadamard differentiable
tangentially to the support of G, this completes the proof.

D.2 Alternative procedure

Lemma D.2. Let assumptions 1, 2, and 3 hold, and {κn}∞n=1 ⊆ R satisfy κn →∞ and κn/
√
n→ 0.

For c ∈ {cL, cH}, let

Ψc(P1|x, P0|x) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

Ψ̂c,x =

{
(ϕ,ψ) ∈ Φc ∩ (Fc ×Fcc ) ; OTc(P̂1|x, P̂0|x) ≤ P̂1|x(ϕ) + P̂0|x(ψ) +

κn√
n

}
and OT ′c,(P1|x,P0|x), ÔT

′
c,x : C(F1,x, L2,P )× C(F0,x, L2,P )→ R, be given by

OT ′c,(P1,|x,P0|x)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1|x,P0|x)

H1(ϕ) +H0(ψ)

ÔT
′
c,x(H1, H0) = sup

(ϕ,ψ)∈Ψ̂c,x

H1(ϕ) +H0(ψ)

Then for any (H1, H0) ∈ C(F1,x, L2,P )× C(F0,x, L2,P ),∣∣∣ÔT ′c,x(H1, H0)−OT ′c,(P1,|x,P0|x)(H1, H0)
∣∣∣ p→ 0

Proof. The proof is similar that of Fang & Santos (2019) lemma S.4.8. As the subscript x plays no
role, we drop it from the notation.

In steps:

1. We first esteablish an inequality used several times below. Note that for any (ϕ̃, ψ̃), (ϕ,ψ) ∈
Φc ∩ (Fc ×Fcc ),

‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0 ≥ P̂1(ϕ)− P1(ϕ) + P̂0(ψ)− P0(ψ)

‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0 ≥ P1(ϕ̃)− P̂1(ϕ̃) + P0(ψ̃)− P̂0(ψ̃)

Add these to obtain

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
≥ P̂1(ϕ)− P1(ϕ) + P̂0(ψ)− P0(ψ) + P1(ϕ̃)− P̂1(ϕ̃) + P0(ψ̃)− P̂0(ψ̃), (70)
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2. We next show
lim
n→∞

P
(

Ψ(P1, P0) ⊆ Ψ̂c

)
= 1 (71)

Let (ϕ̃, ψ̃) ∈ Ψ(P1, P0), and rearrange (70) to find

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
≥ P̂1(ϕ) + P̂0(ψ)− P̂1(ϕ̃)− P̂ (ψ̃) + P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)︸ ︷︷ ︸

≥0

≥ P̂1(ϕ) + P̂0(ψ)− P̂1(ϕ̃)− P̂ (ψ̃)

and therefore

sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1(ϕ) + P̂0(ψ) ≤ P̂1(ϕ̃) + P̂ (ψ̃) + 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
holds for any (ϕ̃, ψ̃) ∈ Ψc(P1, P0). It follows that 2

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< κn√

n

implies (ϕ̃, ψ̃) ∈ Ψ̂c, and hence

P

(
2

√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< 1

)
≤ P

(
Ψ(P1, P0) ⊆ Ψ̂c

)
Lemma C.16 implies ‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

p→ 0. Since
√
n

κn
→ 0, this implies that

2
√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
= op(1) and therefore

lim
n→∞

P
(

Ψ(P1, P0) ⊆ Ψ̂c

)
≥ lim

n→∞
P

(
2

√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< 1

)
= 1

as was to be shown.

3. We next show that for any δ > 0,

lim
n→∞

P
(

Ψ̂c ⊆ (Ψ(P1, P0))δ
)

= 1 (72)

where (Ψ(P1, P0))δ is an open δ-enlargement of Ψ(P1, P0) under L2; i.e.

(Ψ(P1, P0))δ =

{
(f, g) ; inf

(ϕ,ψ)∈Ψ(P1,P0)
L2((ϕ,ψ), (f, g)) < δ

}
Toward this end, note that

η ≡

[
sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )
{P1(ϕ) + P0(ψ)} − sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )\(Ψ(P1,P0))δ
{P1(ϕ) + P0(ψ)}

]
> 0

η > 0 follows from compactness of Φc ∩ (Fc × Fcc ) and continuity of P1 + P0 with respect to
L2 (see the proof of lemma B.2).
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Rearrange (70) to find

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)

≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+ P̂1(ϕ̃) + P̂0(ψ̃)− P̂1(ϕ)− P̂0(ψ)

Take suprema over (ϕ̃, ψ̃) ∈ Φc ∩ (Fc ×Fcc ) to find

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)

≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+ sup

(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃)− P̂1(ϕ)− P̂0(ψ)

(73)

Suppose there exists (ϕ,ψ) ∈ Φc∩(Fc×Fcc )\(Ψ(P1, P0))δ such that sup(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc ) P̂1(ϕ̃)+

P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) + κ√
n

. For any such (ϕ,ψ), (73) implies

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ) ≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+
κn√
n

from which it follows that

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+
κn√
n

≥ sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )\(Ψ(P1,P0))δ

{P1(ϕ) + P0(ψ)}

= η

To summarize: if there exists (ϕ,ψ) ∈ Φc∩(Fc×Fcc )\(Ψ(P1, P0))δ such that sup(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc ) P̂1(ϕ̃)+

P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) + κ√
n

, then 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+ κn√

n
≥ η, from which it

follows that

P
(

Ψ̂c 6⊆ (Ψ(P1, P0))δ
)

= P

(
sup

(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) +
κ√
n

for some (ϕ,ψ) ∈ Φc ∩ (Fc ×Fcc ) \ (Ψ(P1, P0))δ
)

≤ P
(

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+
κn√
n
≥ η

)
→ 0

where the final limit claim follows from η > 0, κn/
√
n→ 0, and ‖P̂1−P1‖F1 + ‖P̂0−P0‖F0 =

op(1).

4. (71) and (72) imply that for any δ > 0, P
(

Ψc(P1, P0) ⊆ Ψ̂c ⊆ Ψc(P1, P0)δ
)
→ 1. It follows

that there exists a sequence {δn}∞n=1 ⊆ R+ with δn ↓ 0 such that P
(

Ψ(P1, P0) ⊆ Ψ̂c ⊆ Ψ(P1, P0)δn
)
→
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1. Notice that when Ψ(P1, P0) ⊆ Ψ̂c ⊆ Ψ(P1, P0)δn holds,∣∣∣ÔT ′c,x(H1, H0)−OT ′c,(P1,P0)(H1, H0)
∣∣∣

≤ sup
(ϕ,ψ)∈Ψc(P1,P0)δn∩Φc∩(Fc×Fcc )

{H1(ϕ) +H0(ψ)} − sup
(ϕ,ψ)∈Ψc(P1,P0)

{H1(ϕ) +H0(ψ)}

≤ sup
(ϕ1,ψ1),(ϕ2,ψ2)∈Φc∩(Fc×Fcc ); L2((ϕ1,ψ1),(ϕ2,ψ2))<δn

{H1(ϕ1) +H0(ψ1)−H1(ϕ2)−H0(ψ0)}

= op(1)

where the op(1) claim follows from H1 + H0 being continuous and Φc ∩ (Fc × Fcc ) being
compact, implying H1 +H0 is in fact uniformly continuous.

This concludes the proof.

Theorem 5.4. Suppose assumptions 1, 2, and 3 hold, let P∗n be given by definition 5.1 or 5.2, and
{κn}∞n=1 ⊆ R satisfy κn →∞ and κn/

√
n→ 0. Then conditional on {Yi, Di, Zi, Xi}ni=1,

D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn)))

L→ T ′P (G)

in outer probability.

Proof. The overall strategy is to apply Fang & Santos (2019) theorem 3.2, viewing T1(Pn) as the
estimator for T1(P ), T1(P∗n) as the bootstrap, and T−1 = T4◦T3◦T2 as the directionally differentiable
function. There are four assumption to verify.

1. To see that Fang & Santos (2019) assumption 1 holds,

(i) the map

T4 ◦ T3 ◦ T2 :

M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R→ R2

is a map between Banach spaces

(ii) by lemmas C.13, C.14, C.15 and the chain rule (lemma F.4), T−1 = T4 ◦ T3 ◦ T2 is
Hadamard directionally differentiable at T1(P ) tangentially to

DTan =

M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R

2. To see that the estimator T1(Pn) satisfies Fang & Santos (2019) assumption 2, note that

(i) T1(P ) ∈
∏M
m=1 `

∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R and lemma C.9 shows

T1(Pn) : {Yi, Di, Zi, Xi}ni=1 →
M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R

satisfies
√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G).
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(ii) T ′1,P (G) is tight because G is tight and T ′1,P is continuous. Lemma C.9 also shows the
support of T ′1,P (G) is included in DTan.

3. The bootstrap T1(P∗n) satisfies Fang & Santos (2019) assumption 3:

(i) T1(P∗n) is a function of {Yi, Di, Zi, Xi,Wi}ni=1 with {Wi}ni=1 independent of {Yi, Di, Zi, Xi}ni=1.

(ii) T1 is fully Hadamard differentiable at P tangentially to `∞(F), and hence the functional

delta method implies
√
n(T1(Pn)−T1(P ))

L→ T ′1,P (G). Lemma D.1 shows that P∗n satisfies
Fang & Santos (2019) assumption 3, and thus Fang & Santos (2019) theorem 3.1 implies

sup
f∈BL1

∣∣E [f(
√
n(T1(P∗n)− T1(Pn))) | {Yi, Di, Zi, Xi}ni=1

]
− E[f(T ′1,P (G))]

∣∣ = op(1)

(iii) Condition (iv) below holds, and hence Fang & Santos (2019) lemma S.3.9 implies√
n(T1(P∗n)− T1(Pn)) is asymptotically measurable.

(iv) Note that for any continuous and bounded function f , f(
√
n(T1(P∗n)− T1(Pn))) is con-

tinuous in {Wi}ni=1 and hence is a measurable function of {Wi}ni=1.

4. Fang & Santos (2019) assumption 4 is about the estimator of the derivative.

Notice that T ′−1,T1(P ) = T ′4,T3(T2(T1(P ))) ◦ T
′
3,T2(T1(P )) ◦ T

′
2,T1(P ) is given by

T ′−1,T1(P ) : DTan → R2, T ′−1,T1(P )(h) = D4D3T
′
2,T1(P )(h)

Estimate this derivative with

T̂ ′−1,T1(P ) : DTan → R2, D̂4D̂3T̂
′
2,T1(P )(h)

The estimator T̂ ′−1,T1(P ) satisfies the conditions of Fang & Santos (2019) lemma S.3.6, and

therefore Fang & Santos (2019) assumption 4. These conditions are

(a) Modulus of continuity: ‖T̂ ′−1,T1(P )(h1) − T̂ ′−1,T1(P )(h2)‖ ≤ Cn‖h1 − h2‖ for some Cn =

Op(1).

(b) Pointwise consistency: for any h, ‖T̂−1,T1(P )(h)− T−1,T1(P )(h)‖ = op(1).

To see these claims in detail:

(a) For any matrix A, let ‖A‖o = supx;‖x‖2=1‖Ax‖2 be the operator norm.

‖T̂ ′−1,T1(P )(h1)− T̂ ′−1,T1(P )(h2)‖ = ‖D̂4D̂3T̂
′
2,T1(P )(h1)− D̂4D̂3T̂

′
2,T1(P )(h2)‖

≤ ‖D̂4D̂3‖o‖T̂ ′2,T1(P )(h1)− T̂ ′2,T1(P )(h2)‖

≤ ‖D̂4D̂3‖‖‖h1 − h2‖

where the last claim follows because T̂ ′2,T1(P ) is 1-Lipschitz (shown below). Next notice

D̂4
p→ D4 and D̂3

p→ D3 by the CMT, which implies ‖D̂4D̂3‖ = Op(1) as required.
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To see that T̂ ′2,T1(P ) is 1-Lipschitz, recall

T̂ ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
ÔT
′
cL,x

(H1,x, H0,x),−ÔT
′
cH ,x

(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)
The maps ÔT cL,x,−ÔT cH ,x are 1-Lipschitz. Specifically, note that

|ÔT
′
cL,x

(H1,x, H0,x)− ÔT
′
cL,x

(G1,x, G0,x)|

=

∣∣∣∣∣ sup
(ϕ,ψ)∈Ψ̂c,x

{H1,x(ϕ) +H0,x(ψ)} − sup
(ϕ,ψ)∈Ψ̂c,x

{G1,x(ϕ) +G0,x(ψ)}

∣∣∣∣∣
≤ sup

ϕ∈F1,x

|H1,x(ϕ)−G1,x(ϕ)|+ sup
ψ∈F0,x

|H0,x(ψ)−G0,x(ψ)|

= ‖H1,x −G1,x‖F1,x + ‖H0,x −G0,x‖F0,x

and similarly, −ÔT cH ,x is 1-Lipschitz. The other maps in T̂2,T1(P ) are the identity map,

which is also 1-Lipschitz. It follows that T̂2,T1(P ) is 1-Lipschitz.16

(b) To show pointwise consistency, fix h = ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X ) and note that

‖T̂ ′−1,T1(P )(h)− T−1,T1(P )‖ = ‖D̂4D̂3T̂2,T1(P )(h)−D4D3T2,T1(P )(h)‖

≤ ‖(D̂4D̂3 −D4D3)T ′2,T1(P )(h)‖+ ‖D4D3(T̂2,T1(P )(h)− T2,T1(P )(h))‖

≤ ‖D̂4D̂3 −D4D3‖o‖T ′2,T1(P )(h)‖+ ‖D4D3‖o‖T̂2,T1(P )(h)− T2,T1(P )(h)‖

Since D̂4D̂3
p→ D4D3 by the CMT, it suffices to show

‖T̂2,T1(P )(h)− T2,T1(P )(h)‖ = op(1)

The only nonzero coordinates correspond to ÔT
L′
cL,x

(H1,x, H0,x) and−ÔT
H′
cH ,x

(H1,x, H0,x):

‖T̂2,T1(P )(h)− T2,T1(P )(h)‖2

=
(
ÔT
′
cL,x

(H1,x, H0,x)−OT ′cL,(P1|x,P0|x)(H1,x, H0,x)
)2

+
(
ÔT
′
cH ,x

(H1,x, H0,x)−OT ′cH ,(P1|x,P0|x)(H1,x, H0,x)
)2

= op(1) + op(1)

where the last op(1) claim follows from lemma D.2.

16For k = 1, 2, let Dk, Ek be metric spaces. If fk : Dk → Ek be Lipschitz with constants Lk, then f : D1 × D2 →
E1×E2 given by f(x1, x2) = (f1(x1), f2(x2)) is Lipschitz with constant max{L1, L2}. To see this, recall D1×D2 and
E1 × E2 are metricized with the norms ‖(x1, x2)‖D1×D2 = ‖x1‖D1 + ‖x2‖D2 and ‖(y1, y2)‖E1×E2 = ‖y1‖E1 + ‖y2‖E2 ,
and note that

‖f(x1, x2)− f(x′1, x
′
2)‖E1×E2 = ‖(f1(x1), f2(x2))− (f1(x′1), f2(x′2))‖E1×E2 = ‖f1(x1)− f1(x′1)‖E1 + ‖f2(x2)− f2(x′2)‖E2

≤ L1‖x− x′1‖D1 + L2‖x2 − x′2‖D2 ≤ max{L1, L2}‖x− x′1‖D1 + max{L1, L2}‖x2 − x′2‖D2

= max{L1, L2} × ‖(x1, x2)− (x′1, x
′
2)‖D1×D2
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We conclude through Fang & Santos (2019) lemma S.3.6 that Fang & Santos (2019) assump-
tion 4 is satisfied.

Finally, apply Fang & Santos (2019) theorem 3.2 to find that

sup
f∈BL1

∣∣∣E [f(D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn))))

]
− E

[
f(T ′P (G))

]∣∣∣ = op(1)

as was to be shown.
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E Appendix: duality in optimal transport

This appendix contains terminology, notation, and results regarding optimal transport used in this

paper. Most of these results can be found in the monographs Villani (2003), Villani (2009), or

Santambrogio (2015).

E.1 Primal and dual problems

Let Y1,Y0 be Polish subsets of R, equipped with their Borel sigma algebras. Let P(Yd) be the set

of probability distributions defined on Yd, and Pd ∈ P(Yd). Let P(Y1×Y0) be the set of probability

distributions on the product space Y1 × Y0.

A probability measure π ∈ P(Y1 × Y0) has marginals P1 and P0 if

For all A ⊂ Y1 measurable, π(A× Y0) = P1(A) =

∫
1A(y1)dP1(y1) (74)

For all B ⊂ Y0 measurable, π(Y1 ×B) = P0(B) =

∫
1B(y0)dP0(y0) (75)

The collection of such joint distributions with marginals P1 and P0 is denoted

Π(P1, P0) = {π ∈ P(Y1 × Y0) ; π satisfies (74) and (75)} (76)

The cost function is a measurable function c : Y1 × Y0 → R. The functional I : P(Y1 × Y0) →

R ∪ {+∞} is defined as

Ic[π] =

∫
c(y1, y0)dπ(y1, y0) (77)

The optimal cost OTc(P1, P0) is the infimum of Ic[π] over Π(P1, P0):

OTc(P1, P0) = inf
π∈Π(P1,P0)

Ic[π] = inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) (78)

This minimization problem in (78) is known as optimal transport. When attained, a solution

to (78) is called an optimal transference plan or optimal coupling. Attainment is common;

Villani (2009) theorem 4.1 implies:

Lemma E.1 (Optimal transport is attained). Let c : Y1 × Y0 → R be lower semicontinuous and
bounded from below. Then there exists π∗ ∈ Π(P1, P0) such that

Eπ∗ [c(Y1, Y0)] = inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0)
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The dual problem will require some additional notation. For any probability measure P let

L1(P ) denote the P -integrable functions. Define

Φc =
{

(ϕ,ψ) ∈ L1(P1)× L1(P0) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)
}
, (79)

and J : L1(P1)× L1(P0)→ R by

J(ϕ,ψ) =

∫
Y1

ϕ(y1)dP1(y1) +

∫
Y0

ψ(y0)dP0(y0) (80)

The dual problem of optimal transport is

sup
(ϕ,ψ)∈Φc

J(ϕ,ψ) = sup
(ϕ,ψ)∈Φc

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0) (81)

E.2 Duality

For any topological space Z, let Cb(Z) denotes the set of functions f : Z → R that are continuous

and bounded, and

Φc ∩ Cb = {(ϕ,ψ) ∈ Cb(Y1)× Cb(Y0) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} (82)

The following weak duality statement is Villani (2003) proposition 1.5.

Lemma E.2 (Weak duality).

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ,ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ,ψ) ≤ inf
π∈Π(P1,P0)

Ic[π]

The following strong duality statement can be directly inferred from Villani (2009) theorem

5.10, or Santambrogio (2015) theorem 1.42, and so is presented without proof.

Theorem E.3 (Strong duality). Let c : Y1 × Y0 → R be lower semi-continuous and bounded from
below. Then

inf
π∈Π(P1,P0)

Ic[π] = sup
ϕ,ψ∈Φc

J(ϕ,ψ) = sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ,ψ) (83)

Moreover, the infimum of the left-hand side of (83) is attained.
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E.3 c-concave functions

For any function ϕ : Y1 → R and cost function c(y1, y0), define the c-transform of ϕ as the

function ϕc : Y0 → R given by

ϕc(y0) = inf
y1∈Y1

{c(y1, y0)− ϕ(y1)}.

Similarly, ψc(y1) = infy0∈Y0{c(y1, y0) − ψ(y0)} is the c-transform of ψ. ϕ is called c-concave if

ϕcc = (ϕc)c = ϕ. If ϕ is c-concave, then (ϕ,ϕc) is called a c-concave conjugate pair.

The following lemma E.4 is exercise 2.35 found in Villani (2003) and presented without proof.

Lemma E.4 (Villani (2003) exercise 2.35). Let Y1 and Y0 be nonempty sets and c : Y1 × Y0 → R
be an arbitrary function. Let ϕ : Y1 → R. Then

(i) ϕ(y1) + ϕc(y0) ≤ c(y1, y0) for all (y1, y0) ∈ Y1 × Y0

(ii) ϕcc(y1) ≥ ϕ(y1) for all y1 ∈ Y1, and

(iii) ϕccc(y0) = ϕc(y0) for all y0 ∈ Y0

It follows that ϕcc = ϕ if and only if ϕ is c-concave.

For H ⊆ {(f, g) ; f : Y1 → R, and g : Y0 → R}, let

Fcc (H) =

{
ϕc : Y0 → R ; ∃(f, g) ∈ H s.t. ϕc(y0) = inf

y1∈Y1

{c(y1, y0)− f(y1)}
}

(84)

Fc(H) =

{
ϕ : Y1 → R ; ∃ϕc ∈ F cc (H) s.t. ϕ(y1) = inf

y0∈Y0

{c(y1, y0)− ϕc(y0)}
}

Fc(H) is called the c-concave functions generated by H, and Fcc (H) the c-conjugates gen-

erated by H.17 Notice that not every (ϕ,ψ) ∈ Fc(H)×Fcc (H) is a c-concave conjugate pair.

Lemma E.5 (Restricting the dual to c-concave functions). Let Φcs ⊆ Φc be such that

1. strong duality holds: infπ∈Π(P1,P0) Ic[π] = sup(ϕ,ψ)∈Φcs J(ϕ,ψ), and

2. the c-concave functions generated by Φcs are integrable: Fc(Φcs)×Fcc (Φcs) ⊂ L1(P1)×L1(P0)

then
inf

π∈Π(P1,P0)
Ic[π] = sup

ϕ∈Fc(Φcs)
J(ϕ,ϕc) = sup

(ϕ,ψ)∈Φc∩
(
Fc(Φcs)×Fcc (Φcs)

) J(ϕ,ψ).

17H is a typically a subset of L1(P1)×L1(P0). As defined the sets Fc(H) and Fcc (H) only depend on the functions

in H that map Y0 to R. This notational choice is more natural with the reasoning of lemma E.5 below.
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Proof. Let (ϕ,ψ) ∈ Φcs. ψ(y0) ≤ c(y1, y0) − ϕ(y1) implies ψ(y0) ≤ ϕc(y0), and lemma E.4 shows
both that ϕ(y1) ≤ ϕcc(y1) and the pair (ϕcc, ϕc) is a c-concave conjugate pair; thus (ϕcc, ϕc) ∈
Φc ∩

(
Fc(Φcs)×Fcc (Φcs)

)
.

Since ϕcc and ϕc are integrable by assumption, J(ϕ,ψ) ≤ J(ϕcc, ϕc) and hence

inf
π∈Π(P1,P0)

Ic[π] = sup
(ϕ,ψ)∈Φcs

J(ϕ,ψ) ≤ sup
ϕcc∈Fc(Φcs)

J(ϕcc, ϕc) ≤ sup
(ϕ,ψ)∈Φc∩(Fc(Φcs)×Fcc (Φcs))

J(ϕ,ψ)

Finally, since Φc ∩ (Fc(Φcs)×Fcc (Φcs)) ⊂ Φc, it follows that

sup
ϕ∈Fc(Φcs)

J(ϕ,ϕc) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ,ψ) = inf
π∈Π(P1,P0)

Ic[π]

with the final equality following from strong duality.

Lemma E.6 (Continuous cost function implies measurability of c-concave functions). If c : Y1 ×
Y0 → R is continuous, then for any ψ : Y0 → R, ϕ(y1) = infy0∈Y0{c(y1, y0)− ψ(y0)} and ϕc(y0) =
infy1∈Y1{c(y1, y0)− ϕ(y1)} are upper semicontinuous and hence measurable.

Proof. The pointwise infimum of a family of upper semicontinuous functions is upper semicontinu-
ous (Aliprantis & Border (2006) Lemma 2.41). Since c(y1, y0) is continuous, for any fixed y0 ∈ Y0

the function y1 7→ c(y1, y0)− ψ(y0) is continuous and hence

ϕ(y1) = inf
y0∈Y0

{c(y1, y0)− ψ(y0)}

is upper semicontinuous. Similarly, ϕc(y0) = infy1∈Y1{c(y1, y0) − ϕ(y1)} is upper semicontinuous.
Being upper semicontinuous, ϕ and ϕc are measurable.

Remark E.1. Compare lemma E.6 with Villani (2009) Remark 5.5 discussing measurability of c-
concave functions. Note that continuity of c is sufficient but not necessary for measurability of
c-concave functions; see section E.3.2 for counterexamples.

Lemma E.7 (Universal bound on the the dual problem feasible set). Suppose c : Y1 × Y0 → R is
bounded, and let cL = inf(y1,y0)∈Y1×Y0

c(y1, y0), cH = sup(y1,y0)∈Y1×Y0
c(y1, y0).

1. For any bounded functions ϕ : Y1 → R and ψ : Y0 → R, ϕc and ψc are bounded.

2. For any bounded, measurable c-conjugate pair (ϕ,ϕc) there exists ϕ̄ such that

(i) ϕ̄ and ϕ̄c satisfy the bounds:

cL ≤ ϕ̄(y1) ≤ cH cL − cH ≤ ϕ̄c(y0) ≤ 0

for all (y1, y0) ∈ Y1 × Y0.

(ii) J(ϕ,ϕc) = J(ϕ̄, ϕ̄c).
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Proof. For claim 1, let ϕ be bounded and note that

cL − supϕ ≤ inf
y1∈Y1

{c(y1, y0)− ϕ(y1)}︸ ︷︷ ︸
=ϕc(y0)

≤ cH − supϕ (85)

are finite bounds on ϕc. The upper bound on ϕc follows from the existence of a sequence {y1j}∞j=1

with ϕ(y1j)→ supy1∈Y1
ϕ(y1), because ϕc(y0) = infy1∈Y1{c(y1, y0)− ϕ(y1)} ≤ c(y1j , y0)− ϕ(y1j) ≤

cH − ϕ(y1j) for all j. The same argument shows ψc is bounded, specifically,

cL − supψ ≤ inf
y0∈Y0

{c(y1, y0)− ψ(y0)}︸ ︷︷ ︸
=ψc(y1)

≤ cH − supψ (86)

For claim 2, let (ϕ,ϕc) be a c-conjugate pair, i.e. ϕ(y1) = infy0∈Y0{c(y1, y0) − ϕc(y0)}. Notice
that for any s ∈ R,

(ϕ+ s)c(y0) = inf
y1∈Y1

{c(y1, y0)− ϕ(y1)− s} = ϕc(y0)− s

(ϕ+ s)cc(y0) = inf
y0∈Y0

{c(y1, y0)− ϕc(y1) + s} = ϕ(y1) + s

Define ϕ̄(y1) = ϕ(y1) − supϕ + cH , and notice that sup ϕ̄ = cH . Thus (85) implies cL − cH ≤
ϕ̄c(y0) ≤ 0 for all y0 ∈ Y0, and so (86) implies cL ≤ ϕ̄cc(y1) = ϕ̄(y1) ≤ cH . Finally,

J(ϕ,ϕc) =

∫
ϕ(y1)dP1(y1) +

∫
ϕc(y0)dP0(y0)

=

∫
ϕ(y1)− supϕ+ cHdP1(y1) +

∫
ϕc(y0) + supϕ− cHdP0(y0)

= J(ϕ̄, ϕ̄c)

which completes the proof.

Remark E.2. Lemma E.7 shows that it is often without loss of generality to restrict the dual to
classes of functions sharing universal bounds. For an example, see lemma E.9 below.

Note that when cL = 0, the bounds simplify to

0 ≤ ϕ̄(y1) ≤ ‖c‖∞, − ‖c‖∞ ≤ ϕ̄c(y0) ≤ 0

as in Villani (2003) Remark 1.13. Also note that, when any universal bound suffices, one can take

− ‖c‖∞ ≤ ϕ̄(y1) ≤ ‖c‖∞, − 2‖c‖∞ ≤ ϕ̄c(y0) ≤ 0

which depend only on ‖c‖∞ = sup(y1,y0)∈Y1×Y0
|c(y1, y0)|.
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E.3.1 c-concave functions of smooth cost functions

For α ∈ (0, 1] and L > 0, c : Y1 × Y0 → R is called (α,L)-Hölder continuous if

|c(y1, y0)− c(y′1, y′0)| ≤ L‖(y1, y0)− (y′1, y
′
0)‖α

for all (y1, y0), (y′1, y
′
0) ∈ Y1 × Y0.

Lemma E.8 (Hölder cost implies Hölder c-concave functions). Let c : Y1×Y0 → R be (α,L)-Hölder
continuous. For any g : Y0 → R,

ϕ(y1) = inf
y0∈Y0

{c(y1, y0)− g(y0)}, ϕc(y0) = inf
y1∈Y1

{c(y1, y0)− ϕ(y1)}

are (α,L)-Hölder continuous.

Proof. Hölder continuity implies c(y1, y0) ≤ c(y′1, y0) + L|y1 − y′1|α holds for any y0 ∈ Y0 and any
y1, y

′
1 ∈ Y1. It follows that

ϕ(y1) = inf
y′0∈Y0

{c(y1, y
′
0)− g(y′0)} ≤ c(y1, y0)− g(y0) ≤ c(y′1, y0)− g(y0) + L|y1 − y′1|α

implying ϕ(y1)− (c(y′1, y0)− g(y0)) ≤ L|y1 − y′1|α. Therefore

ϕ(y1)− ϕ(y′1) = ϕ(y1)− inf
y0∈Y0

{c(y′1, y0)− g(y0)} ≤ L|y1 − y′1|α

holds for any y1, y
′
1 ∈ Y1. This implies ϕ(y′1)− ϕ(y1) ≤ L|y′1 − y1|α, hence ϕ is (α,L)-Hölder. The

same argument implies ϕc is (α,L)-Hölder.

Lemmas E.9, C.1, and C.10, are relevant for compact Y1,Y0 ⊂ R, and L-Lipscthiz c : Y1×Y0 →

R. Under these assumptions, define

Fc =
{
ϕ : Y1 → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y1)− ϕ(y′1)| ≤ L|y1 − y′1|

}
(87)

Fcc =
{
ψ : Y0 → R ; −2‖c‖∞ ≤ ψ(y0) ≤ 0, |ψ(y0)− ψ(y′0)| ≤ L|y0 − y′0|

}
(88)

Lemma E.9 (Strong duality for smooth cost functions). Let Y1,Y0 ⊂ R be compact, c : Y1×Y0 → R
be L-Lipschitz, and Fc, Fcc be given by (87) and (88) respectively. Then strong duality holds:

inf
π∈Π(P1,P0)

Ic[π] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

J(ϕ,ψ)

Proof. First notice lemma E.8 implies Fc(Φc∩Cb) and Fcc (Φc∩Cb) consist of L-Lipschitz functions.18

18Note that Fc(Φc ∩ Cb) and Fcc (Φc ∩ Cb) are not necessarily Fc and Fcc defined in the statement of the lemma.
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Since c is continuous and Y1 × Y0 is compact, ‖c‖∞ = supy1,y0∈Y1×Y0
|c(y1, y0)| < ∞. Continuity

implies these c-concave functions are measurable, and lemma E.7 shows they are bounded. Thus
Fc(Φc ∩ Cb)×Fcc (Φc ∩ Cb) ⊆ L1(P1)× L1(P0), and so lemma E.5 implies

inf
π∈Π(P1,P0)

Ic[π] = sup
ϕ∈Fc(Φc∩Cb)

J(ϕ,ϕc)

Lemma E.7 and remark E.2 further shows that for every ϕ ∈ Fc(Φc ∩ Cb), a shifted function
ϕ̄ is such that supy1∈Y1

|ϕ̄(y1)| ≤ ‖c‖∞, −2‖c‖ ≤ ϕ̄c(y0) ≤ 0, ϕ̄ and ϕ̄c are L-lipschitz, and
J(ϕ,ϕc) = J(ϕ̄, ϕ̄c). Thus

sup
ϕ∈Fc(Φc∩Cb)

J(ϕ,ϕc) = sup
ϕ∈Fc

J(ϕ,ϕc)

Furthermore,

sup
ϕ∈Fc

J(ϕ,ϕc) ≤ sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

J(ϕ,ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ,ψ) = inf
π∈Π(P1,P0)

Ic[π]

completes the proof.

Remark E.3. Suppose Y1 and Y0 are compact and c(y1, y0) is continuously differentiable on an
open set containing Y1 × Y0. Then c restricted to Y1 × Y0 is bounded and Lipschitz.

That c : Y1×Y0 → R is bounded follows from c being continuous, Y1×Y0 being compact, and the
extreme value theorem. To see that c restricted to Y1×Y0 is L-Lipschitz, let (y1, y0), (y′1, y

′
0) ∈ Y1×

Y0 be arbitrary and note that the mean value theorem applied to g(t) = c(t(y1, y0)+(1− t)(y′1, y′0))
implies there exists s ∈ (0, 1) such that

(c(y1, y0)− c(y′1, y′0)) = g(1)− g(0) = g′(s)

=
〈
∇c(s(y1, y0) + (1− s)(y′1, y′0)), (y1, y0)− (y′1, y

′
0)
〉

Notice that Cauchy-Schwarz then implies

|c(y1, y0)− c(y′1, y′0)| ≤ ‖∇c(s(y1, y0) + (1− s)(y′1, y′0))‖‖(y1, y0)− (y′1, y
′
0)‖

≤ sup
(y′′1 ,y

′′
0 )∈Y1×Y0

‖∇c(y′′1 , y′′0)‖‖(y1, y0)− (y′1, y
′
0)‖

Finally, notice L = sup(y′′1 ,y
′′
0 )∈Y1×Y0

‖∇c(y′′1 , y′′0)‖ is finite because Y1×Y0 is compact and (y1, y0) 7→
‖∇c(y1, y0)‖ is continuous.

E.3.2 c-concave functions when c(y1, y0) = 1{(y1, y0) ∈ C}

Theorem E.10 (Strong duality with indicator costs). Let C be a nonempty, open subset of Y1×Y0,
and c : Y1 × Y0 → R given by c(y1, y0) = 1C(y1, y0) = 1{(y1, y0) ∈ C}. Then

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

where

ΦI
c = {(A,B) ; A ⊂ Y1 is closed and nonempty, B ⊂ Y0 is measurable, and 1A(y1)− 1B(y0) ≤ 1C(y1, y0)}
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Proof. Villani (2003) Theorem 1.27 implies

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

A closed

∫
1A(y1)dP1(y1)−

∫
1AC (y0)dP0(y0)

where AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} is the projection of (A×Y0) \C onto Y0. Measura-
bility of AC is guaranteed by the measurable projection theorem; see Crauel (2002) theorem 2.12.
It is clear that

sup
A closed

∫
1A(y1)dP1(y1)−

∫
1AC (y0)dP0(y0) ≤ sup

A⊆Y1,B⊆Y0

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

with A, B measurable. Notice it is without loss to exclude A = ∅, because J(1∅,−1B) ≤ 0 =
J(1Y1 ,1Y0) and 1Y1(y1)− 1Y0(y0) = 0 ≤ 1C(y1, y0) for all (y1, y0) ∈ Y1 × Y0. Thus

sup
A⊆Y1,B⊆Y0

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

Weak duality (lemma E.2) implies

sup
(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dP0(y0) ≤ inf

π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0)

and the result follows.

The strong duality result of theorem E.10 is especially useful when combined with a careful char-

acterization of the corresponding c-concave functions. To describe these, let A ⊆ Y1 be nonempty,

and define

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , (y1, y0) ∈ C

}
,

(89)

C0m = {y0 ∈ Y0 ; ∀y1 ∈ Y1, (y1, y0) ∈ C} , C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} (90)

CC0m =


C1m if C0m = ∅

∅ if C0m 6= ∅
, CC1m =


C0m if C1m = ∅

∅ if C1m 6= ∅
(91)

Note that AC is well defined whenever A 6= ∅, and to ensure ACC is well defined we require

AC 6= Y0. C0m is denoted as such because 1C0m(y0) = infy1∈Y1 1C(y1, y0) is the subset of Y0 found

by minimizing 1C(y1, y0) over y1 ∈ Y1.

Lemma E.11 (c-concave functions for indicator costs). Let C be a nonempty, open subset of
Y1 × Y0, c : Y1 × Y0 → R given by c(y1, y0) = 1C(y1, y0), A ⊆ Y1 be closed and nonempty, and
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ϕ(y1) = 1A(y1) = 1{y1 ∈ A}. Then

1. ϕc(y0) = −1AC (y0),

2. if AC 6= Y0, then ϕcc(y1) = 1ACC (y1), and

3. If AC = Y0, then J(ϕcc, ϕc) = J(1C1m , 0)

Proof. 1. Notice 1C(y1, y0)− 1A(y1) ∈ {−1, 0, 1}, and

ϕc(y0) = inf
y1∈Y1

{1C(y1, y0)− 1A(y1)}

will never take value 1 because any y1 ∈ A implies the objective is at most 0. Furthermore,
if there exists y1 ∈ A such that (y1, y0) 6∈ C, then the infimum attains −1. If there does not
exist such y1, then ϕc(y0) = 0. Thus ϕc(y0) = −1AC (y0).

2. Suppose AC 6= Y0. Notice that 1C(y1, y0) + 1AC (y0) takes values in {0, 1, 2}, and

ϕcc(y1) = inf
y0∈Y0

{1C(y1, y0) + 1AC (y0)}

will never equal 2 because Y0 \ AC 6= ∅. Moreover, the infimum will equal 1 if and only if
(y1, y0) ∈ C for all y0 ∈ Y0 \AC ; thus ϕcc(y1) = 1ACC (y1).

3. If AC = Y0, then ϕcc(y1) = infy0∈Y0{1C(y1, y0) + 1} = 1C1m(y1) + 1 and

ϕccc(y0) = inf
y1∈Y1

{1C(y1, y0)− 1C1m(y1)− 1} = 1CC1m
(y0)− 1

To see that (1C1m)c = 0 if C1m 6= ∅, notice the objective 1C(y1, y0)−1C1m(y0) takes values in
{−1, 0, 1}, and because C1m 6= ∅ will never take value 1. For the objective to take value −1 at
a given y1, it must be the case that 1C1m(y1) = 1 and there exists y0 such that 1C(y1, y0) = 0,
but this contradicts the definition C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C}.
However, recall that ϕccc(y0) = ϕc(y0) as shown in lemma E.4. Since ϕc(y0) = −1AC (y0) =
−1Y0(y0) = −1, this implies (1CC0m

)(y0) = 0. Then notice that

J(ϕcc, ϕc) = J(1C1m + 1,−1) = J(1C1m , 0)

Remark E.4. Compare theorem E.10 and lemma E.11 with Villani (2003) theorem 1.27.

Lemma E.12 (Convex C implies c-concave functions defined with convex sets). Let C be a
nonempty, open, convex subset of Y1×Y0, and c : Y1×Y0 → R given by c(y1, y0) = 1C(y1, y0). Let
A ⊆ Y1 be nonempty.

1. AC equals Y0 \B for some convex set B.

2. If AC 6= Y0, then ACC is convex.

3. C1m is convex.
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Proof. For claim 1, notice that

AC =
{
y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) ∈

(
Y1 × Y0

)
\ C
}

=
⋃
y1∈A

{
y0 ∈ Y0 ; (y1, y0) ∈

(
Y1 × Y0

)
\ C
}

=
⋃
y1∈A

Y0 \ {y0 ∈ Y0 ; (y1, y0) ∈ C} = Y0 \
⋂
y1∈A

{y0 ∈ Y0 ; (y1, y0) ∈ C}

Since C is convex, {y ∈ Y0 ; (y1, y0) ∈ C} is also convex for any y1. The intersection of an arbitrary
collection of convex sets is convex, so AC = Y0 \B for some convex B.

Consider claim 2 next. Notice that

ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , (y1, y0) ∈ C

}
=

⋂
y0∈Y0\AC

{y1 ∈ Y1 ; (y1, y0) ∈ C}

Since C is convex, {y1 ∈ Y1 ; (y1, y0) ∈ C} is convex as well, and thus ACC is convex.

Finally, we show claim 3. Similar to ACC , notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} =
⋂

y0∈Y0

{y1 ∈ Y1 ; (y1, y0) ∈ C}

is the intersection of convex sets and therefore convex.

Refer to the convex subsets of R as intervals; specifically, I ⊂ R is called an interval if I takes

the form

(`, u) [`, u) (`, u] [`, u]

where ` = −∞ is allowed for (`, u) and (`, u] and u = ∞ is allowed for (`, u) and [`, u). Ic is the

complement of the interval I.

Lemmas E.13, C.2, and C.11 are relevant when the cost function is c(y1, y0) = 1{(y1, y0) ∈ C}

for some nonempty, open, convex C ⊆ Y1 × Y0. When this is so, define

Fc = {ϕ : Y1 → R ; ϕ(y1) = 1I(y1) for some interval I} (92)

Fcc = {ψ : Y0 → R ; ψ(y0) = −1Ic(y0) for some interval I} (93)

Lemma E.13 (Strong duality for indicator cost functions of a convex set). Let Y1,Y0 ⊆ R, C ⊆
Y1×Y0 be nonempty, open, and convex, and let c : Y1×Y0 → R be given by c(y1, y0) = 1C(y1, y0).
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Let Fc and Fcc be given by (92) and (93) respectively. Then strong duality holds:

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩
(
Fc×Fcc

) ∫ ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0) (94)

Proof. Recall that theorem E.10 shows

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

where

ΦI
c = {(A,B) ; A ⊂ Y1 is closed and nonempty, B ⊂ Y0 is measurable, and 1A(y1)− 1B(y0) ≤ 1C(y1, y0)}

We will apply lemma E.5. Let ϕ(y1) = 1A(y1) for some closed and nonempty A ⊂ Y1. There are
two possibilities:

1. AC = Y0, in which case J(ϕcc, ϕc) = J(1C1m , 0), or

2. AC 6= Y0, in which case J(ϕcc, ϕc) = J(1ACC ,−1AC ).

Since C is convex, C1m, and ACC are convex subsets of R (i.e., intervals), as shown in lemma E.12.
AC is the complement of an interval, and 0 = 1∅(y0) is the indicator of the complement of R,
which is the interval (−∞,∞). Since all functions involved are bounded, they are all integrable,
and lemma E.5 implies

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩
(
Fc(ΦIc)×Fcc (ΦIc)

) ∫ ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0)

Finally, note that Fc(ΦI
c) ⊆ Fc and Fcc (ΦI

c) ⊆ Fcc , which implies the strong duality claim in display
(94) holds.

E.4 Special cases: cL(y1, y0, δ) = 1{y1 − y0 < δ} and cH(y1, y0, δ) = 1{y1 − y0 > δ}

Lemma E.14. Let F1(y) = P1(Y1 ≤ y) =
∫
1{y1 ≤ y}dP1(y1) denote the cumulative distribution

function (CDF) of P1, and let F0 the CDF of P0. Let cL(y1, y0, δ) = 1{y1 − y0 < δ}. Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 < δ}dπ(y1, y0)

= max

{
sup
y
{F1(y)− F0(y − δ)}, P1(Y1 < min{Y0}+ δ)

}
(95)

Proof. Let C = {y1 − y0 < δ}. Apply theorem E.10 and lemma E.11 to find that

OTcL(P1, P0) = max{sup
A∈A

P1(Y1 ∈ ACC)− P0(Y0 ∈ AC), P1(Y1 ∈ C1m)}
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where

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , (y1, y0) ∈ C

}
,

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} .

and A is the collection of closed, nonempty subsets of Y1 such that AC 6= Y0.
First consider supA∈A P1(Y1 ∈ ACC)− P0(Y0 ∈ AC). Let A ∈ A and ϕ(y1) = 1A(y1). Thus

AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} = {y0 ∈ Y0 ; y0 ≤ max{A} − δ},
ACC =

{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , y1 − y0 < δ

}
= {y1 ∈ Y1 ; y1 ≤ max{A}}

where we’ve used the fact that AC 6= Y0 implies sup{A} < ∞ and so sup{A} = max{A} because
A is closed. Therefore

J(ϕcc, ϕc) = P1(Y1 ∈ ACC)− P0(Y0 ∈ Ac)
= P1(Y1 ≤ max{A})− P0(Y0 ≤ max{A} − δ)

which takes the form F1(y)− F0(y − δ) for y = max{A}.
Now consider P1(Y1 ∈ C1m), and notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} = {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 − y0 < δ}
= {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 < min{Y0}+ δ}

Thus P1(Y1 ∈ C1m) = P1(Y1 < min{Y0}+ δ). The result follows.

Remark E.5. C1m may be closed; e.g., let Y1 = [0, 1] ∪ [3, 10], let Y0 = [2, 10], and δ = 0. Then
C1m = {y1 ∈ Y1 ; y1 < 2} = [0, 1].

Corollary E.15. Let cL(y1, y0, δ) = 1{y1 − y0 < δ} and P1, P0 have continuous cumulative
distribution functions F1(y) = P1(Y1 ≤ y) and F0(y) = P0(Y0 ≤ y) respectively. Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 < δ}dπ(y1, y0) = sup

y
{F1(y)− F0(y − δ)} (96)

Proof. Continuity of the cumulative distribution functions implies P1(Y1 = δ+min{Y0}) = P0(Y0 =
min{Y0}) = 0, and thus

P1(Y1 < δ + min{Y0}) = P1(Y1 ≤ δ + min{Y0})− P0(Y0 ≤ min{Y0})

Which takes the form F1(y)− F0(y − δ) for y = δ + min{Y0}. It follows that

max

{
sup
y
{F1(y)− F0(y − δ)}, P1(Y1 < min{Y0}+ δ)

}
= sup

y
{F1(y)− F0(y − δ)}

and lemma E.14 gives the result.
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Lemma E.16. Let cH(y1, y0, δ) = 1{y1 − y0 > δ}. Then

OTcH (P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 > δ}dπ(y1, y0)

= max

{
sup
y
{P1([y,∞))− P0([y − δ,∞))}, P1((max{Y0}+ δ,∞))

}
(97)

Proof. The proof is similar to that of lemma E.14. Let C = {y1 − y0 > δ}. Apply theorem E.10
and lemma E.11 to find that

OTcL(P1, P0) = max{sup
A∈A

P1(Y1 ∈ ACC)− P0(Y0 ∈ AC), P1(Y1 ∈ C1m)}

where

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , (y1, y0) ∈ C

}
,

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} .

and A is the collection of closed, nonempty subsets of Y1 such that AC 6= Y0.
Consider supA∈A P1(Y1 ∈ ACC) − P0(Y0 ∈ AC). Let A ∈ A and ϕ(y1) = 1A(y1), and notice

that

AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} = {y0 ∈ Y0 ; y0 ≥ min{A} − δ},
ACC =

{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \AC , y1 − y0 < δ

}
= {y1 ∈ Y1 ; y1 ≥ min{A}}

Where as in the proof of lemma E.14, AC 6= Y0 implies inf{A} > −∞ and so inf{A} = min{A}
because A is closed. Thus

J(ϕcc, ϕc) = P1(Y1 ∈ ACC)− P0(Y0 ∈ Ac)
= P1(Y1 ≥ min{A})− P0(Y0 ≥ min{A} − δ)

which takes the form P1([y,∞))− P0([y − δ,∞)) for y = min{A}.
Now consider P1(Y1 ∈ C1m), and notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} = {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 − y0 > δ}
= {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 > max{Y0}+ δ}

Thus P1(Y1 ∈ C1m) = P1(Y1 > max{Y0}+ δ). The result follows.

Corollary E.17. Let cH(y1, y0, δ) = 1{y1 − y0 > δ} and P1, P0 have continuous cumulative
distribution functions F1(y) = P1(Y1 ≤ y) and F0(y) = P0(Y0 ≤ y) respectively. Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 > δ}dπ(y1, y0) = sup

y
{F0(y − δ)− F1(y)} (98)
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Proof. Continuity of the cumulative distribution functions implies that for any y,

P1([y,∞))− P0([y − δ,∞)) = P1((y,∞))− P0((y − δ,∞))

= (1− F1(y))− (1− F0(y − δ))
= F0(y − δ)− F1(y)

and furthermore,

P1(Y1 > δ + max{Y0}) = 1− F1(δ + min{Y0})− (1− F0(max{Y0})
= F0(max{Y0})− F1(δ + max{Y0})

equals F0(y − δ)− F1(y) for y = max{Y0}+ δ. Finally, lemma E.16 gives

OTcH (P1, P0) = max

{
sup
y
{P1([y,∞))− P0([y − δ,∞))}, P1((max{Y0}+ δ,∞))

}
= sup

y
{F0(y − δ)− F1(y)}
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F Appendix: miscellaneous lemmas

F.1 Continuity

Lemma F.1 (Continuity of maps between bounded function spaces). Let f : Df ⊆ RK → RM be
uniformly continuous. Define the subset of bounded functions on T taking values in Df :

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K

Let F : `∞(T,Df ) → `∞(T )M be defined pointwise as F (g)(t) = f(g(t)). Then F is uniformly
continuous.

Proof. To see that F : `∞(T,Df ) → `∞(T )M is well defined, recall that uniform continuity of f
implies f is bounded on bounded sets. Since {g(t) ; t ∈ T} is bounded for any g ∈ `∞(T,Df ), this
implies supt‖f(g(t))‖ <∞ and hence F (g) ∈ `∞(T )M .

To see uniform continuity of F , let ε > 0 and use uniform continuity of f to choose δ > 0 such
that for all x, x̃ ∈ Df ,

‖x− x̃‖ < δ =⇒ ‖f(x)− f(x̃)‖ < ε/2

Now let g, g̃ ∈ `∞(T,Df ) satisfy ‖g− g̃‖T = supt∈T ‖g(t)− g̃(t)‖ < δ. Then ‖g(t)− g̃(t)‖ < δ for all
t ∈ T , and hence ‖f(g(t))− f(g̃(t))‖ < ε/2 for all t ∈ T , and therefore

‖F (g)− F (g̃)‖T = sup
t∈T
‖f(g(t))− f(g̃(t))‖ ≤ ε

2
< ε

which completes the proof.

Corollary F.2. Let f : Df ⊆ RK → RM be continuous and bounded on bounded subsets of Df .
Let g0 ∈ `∞(T,Df ) where `∞(T,Df ) is as defined in lemma F.1. Suppose that for some δ > 0,

g(T )δ ≡
{
x ∈ RK ; inf

t∈T
‖g0(t)− x‖ ≤ δ

}
is a subset of Df . Then F : `∞(T,Df ) → `∞(T )M defined pointwise by F (g)(t) = f(g(t)) is
continuous at g0.

Proof. For any g ∈ `∞(T,Df ), we have F (g) ∈ `∞(T )M because {x ; x = g(t) for some t ∈ T} is
bounded and f is bounded on bounded subsets.

Let {gn}∞n=1 ⊆ `∞(T,Df ) be such that gn → g0 in `∞(T )K . It suffices to show that F (gn) →
F (g0) in `∞(T )M . Let f̃ : g(T )δ → RM be the restriction of f to g0(T )δ; i.e., f̃(x) = f(x). Note
that because g0(T )δ is a closed and bounded subset of RK , it is compact, and hence f̃ is uniformly
continuous by the Heine-Cantor theorem. Apply lemma F.1 to find that

F̃ : `∞(T, g(T )δ)→ `∞(T )M , F̃ (g)(t) = f̃(g(t)) = f(g(t))

105



is continuous. Since gn → g0 in `∞(T )K , there exists N such that for all n ≥ N , ‖gn − g0‖T =
supt∈T ‖gn(t)−g0(t)‖ < δ. Let g̃k = gk+N . Notice that g̃k(T ) =

{
x ∈ RK ; x = gk(t) for some t ∈ T

}
⊆

g0(T )δ, and hence g̃k ∈ `∞(T, g0(T )δ). Continuity of F̃ and g̃k → g0 implies F̃ (g̃k)→ F̃ (g̃0). Thus

0 = lim
k→∞
‖F̃ (g̃k)− F̃ (g0)‖T = lim

k→∞
‖F (gk+N )− F (g0)‖T = lim

n→∞
‖F (gn)− F (g0)‖T

which completes the proof.

Lemma F.3 (Uniform continuity of restricted sup). For any set X, subset A ⊆ X, and bounded
real-valued functions f, g ∈ `∞(X),∣∣∣∣sup

x∈A
f(x)− sup

x∈A
g(x)

∣∣∣∣ ≤ sup
x∈A
|f(x)− g(x)| (99)

and therefore σA : `∞(X)→ R given by σA(f) = supx∈A f(x) is uniformly continuous.

Proof. Observe that

sup
x∈A

f(x)− sup
x∈A

g(x) ≤ sup
x∈A
{f(x)− g(x)} ≤ sup

x∈A
|f(x)− g(x)|

and

−
[
sup
x∈A

f(x)− sup
x∈A

g(x)

]
= sup

x∈A
g(x)− sup

x∈A
f(x) ≤ sup

x∈A
{g(x)− f(x)} ≤ sup

x∈A
|f(x)− g(x)|

Together these inequalities imply

− sup
x∈A
|f(x)− g(x)| ≤ sup

x∈A
f(x)− sup

x∈A
g(x) ≤ sup

x∈A
|f(x)− g(x)|

which is equivalent to (99).
To see uniform continuity, let ε > 0 and choose δ = ε. Whenever ‖f − g‖X = supx∈X |f(x) −

g(x)| < δ,

|σA(f)− σA(g)| =
∣∣∣∣sup
x∈A

f(x)− sup
x∈A

g(x)

∣∣∣∣ ≤ sup
x∈A
|f(x)− g(x)| ≤ sup

x∈X
|f(x)− g(x)| < δ = ε

which completes the proof.

F.2 Differentiability

This appendix reviews definitions and various facts related to Hadamard directional differentiability.

The following definitions can be found in Fang & Santos (2019).

Let D, E be Banach spaces (complete, normed, vector spaces), and φ : Dφ ⊆ D→ E.

(i) φ is (fully) Hadamard differentiable at x0 ∈ Dφ tangentially to D0 ⊆ D if there exists a
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continuous linear map φ′x0
: D0 → E such that

lim
n→∞

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0

(h)

∥∥∥∥
E

= 0

for all sequences {hn}∞n=1 ⊆ D and {tn}∞n=1 ⊆ R such that hn → h ∈ D0 and tn → 0 as
n→∞, and x0 + tnhn ∈ Dφ for all n.

(ii) φ is Hadamard directionally differentiable at x0 ∈ Dφ tangentially to D0 ⊆ D if there
exists a continuous map φ′x0

: D0 → E such that

lim
n→∞

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0

(h)

∥∥∥∥
E

= 0

for all sequences {hn}∞n=1 ⊆ D and {tn}∞n=1 ⊆ R+ such that hn → h ∈ D0 and tn ↓ 0 as
n→∞, and x0 + tnhn ∈ Dφ for all n.

Fang & Santos (2019) proposition 2.1 shows that linearity is the key property distinguishing

directional and full Hadamard differentiability. Specifically, if φ is Hadamard directionally differ-

entiable at x0 tangentially to a subspace D0, and φ′x0
is linear, then φ is in fact fully Hadamard

differentiable at x0 tangentially to D0.

Hadamard directional differentiability obeys the chain rule.

Lemma F.4 (Chain rule). Let D1, D2, and E be Banach spaces and φ1 : Dφ1 ⊆ D1 → D2,
φ2 : Dφ2 ⊆ D2 → E be functions. Suppose

(i) φ1(Dφ1) = {y ∈ D2 ; y = φ1(x) for some x ∈ Dφ1} ⊆ Dφ2,

(ii) φ1 is Hadamard directionally differentiable at x0 ∈ Dφ1 tangentially to DT1 ⊆ D1, with deriva-
tive φ′1,x0

(h), and

(iii) φ2 is Hadamard directionally differentiable at φ1(x0) ∈ Dφ2 tangentially to DT2 ⊆ D2, with
derivative φ′2,φ1(x0)(h)

Let DT =
{
x ∈ DT1 ; φ′1,x0

(x) ∈ DT2
}

. The composition function

φ : Dφ1 → E, φ(x) = φ2(φ1(θ))

is Hadamard directionally differentiable at x0 tangentially to DT , with

φ′x0
: DT → E, φ′x0

(h) = φ′2,φ1(x0)(φ
′
1,x0

(h))

Proof. That φ is well defined is clear from assumption (i). To show its Hadamard directional
differentiability, let {hn}∞n=1 ⊆ Dφ1 and {tn}∞n=1 ⊆ R+ be such that hn → h ∈ DT , tn ↓ 0, and
x0 + tnhn ∈ Dφ1 for all n. Assumption (ii) implies that

lim
n→∞

∥∥∥∥φ1(x0 + tnhn)− φ1(x0)

tn
− φ′1,x0

(h)

∥∥∥∥
D2

= 0 (100)
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Let gn = 1
tn

[φ1(x0 + tnhn)− φ1(x0)], g = φ′1,x0
(h), and notice that (100) implies gn → g in D2.

Assumption (i) implies φ1(x0) + tngn = φ1(x0 + tnhn) ∈ Dφ2 for each n, and the definition of
DT implies g ∈ DT2 . Assumption (iii) implies that

lim
n→∞

∥∥∥∥φ2(φ1(x0) + tngn)− φ2(φ1(x0))

tn
− φ′2,φ1(x0)(g)

∥∥∥∥
E

= 0 (101)

Substitute φ2(φ1(x0) + tngn) = φ2(φ1(x0 + tnhn)), and g = φ′1,x0
(h), into (101) to find

lim
n→∞

∥∥∥∥φ2(φ1(x0 + tnhn))− φ2(φ1(x0))

tn
− φ′2,φ1(x0)(φ

′
1,x0

(h))

∥∥∥∥
E

= 0

which completes the proof.

Remark F.1. When defining and differentiating composition of functions, the outer function’s prop-
erties determine restrictions that must be placed on the inner function to ensure the composition
function is well defined and differentiable.

A familiar example of this is that the domain of the “inner function” φ1 may need to be
restricted to ensure the composition map is well defined. For a simple example, x3 is well defined
and differentiable for any x ∈ R, but log(x3) is only well defined (and differentiable) for x ∈ (0,∞).

A less familiar example shows up only when considering Hadamard differentiability tangentially
to a set. The tangent spaces of each function jointly determine the tangent space of the derivative
of the composition map.

The next lemma shows that Hadamard directionally differentiable functions can be “stacked”.

Lemma F.5 (Stacking Hadamard differentiable functions). Let D, E1, and E2 be Banach spaces,
and Dφ ⊆ D. Suppose φ(1) : Dφ → E1 and φ(2) : Dφ → E2 are Hadamard directionally differentiable

tangentially to D0 ⊆ D at x0 ∈ Dφ with derivatives φ
(1)′
x0 : D0 → E1 and φ

(2)′
x0 : D0 → E2. Define

φ : Dφ → E1 × E2, φ(x) =
(
φ(1)(x), φ(2)(x)

)
Then φ is Hadamard directionally differentiable tangentially to D0 at x0, with derivative

φ′x0
: D0 → E1 × E2, φ′x0

(h) =
(
φ

(1)′
x0 (h), φ

(2)′
x0 (h)

)
Proof. Hadamard directional differentiability of φ(1) and φ(2) tangentially to D0 at x0 implies that

for any sequences {hn}∞n=1 ⊆ D and {tn} ⊆ R+ such that hn → h ∈ D0, tn ↓ 0, and x0 + tnhn ∈ Dφ

for all n,

lim
n→∞

∥∥∥∥∥φ(1)(x0 + tnhn)− φ(1)(x0)

tn
− φ(1)′

x0
(h)

∥∥∥∥∥
E1

= 0, and

lim
n→∞

∥∥∥∥∥φ(2)(x0 + tnhn)− φ(2)(x0)

tn
− φ(2)′

x0
(h)

∥∥∥∥∥
E2

= 0
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Since ‖(e1, e2)− (ẽ1, ẽ2)‖E1×E2 = ‖e1− ẽ1‖E1 + ‖e2− ẽ2‖E2 metricizes E1×E2 (Aliprantis & Border

(2006) lemma 3.3), we have

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0

(h)

∥∥∥∥
E1×E2

=

∥∥∥∥∥∥∥
(
φ(1)(x0 + tnhn), φ(2)(x0 + tnhn)

)
−
(
φ(1)(x0), φ(2)(x0)

)
tn

−
(
φ

(1)
x0 (h), φ

(2)
x0 (h)

)∥∥∥∥∥∥∥
E1×E2

=
∥∥∥(φ(1)(x0+tnhn)−φ(1)(x0)

tn
− φ(1)′

x0 (h), φ(2)(x0+tnhn)−φ(2)(x0+tnhn)
tn

− φ(2)′
x0

)∥∥∥
E1×E2

=

∥∥∥∥∥φ(1)(x0 + tnhn)− φ(1)(x0)

tn
− φ(1)′

x0
(h)

∥∥∥∥∥
E1

+

∥∥∥∥∥φ(2)(x0 + tnhn)− φ(2)(x0)

tn
− φ(2)′

x0
(h)

∥∥∥∥∥
E2

Taking the limit as n→∞ gives the result.

F.2.1 Hadamard differentiability in bounded function spaces

It is common to “rearrange” Donsker sets; i.e. view them not as scalar-valued but vector-valued

with each coordinate occuring over a particular subset of functions (see Van der Vaart (2000)

p. 270). The following lemma shows that one direction of the equivalence can be viewed as an

application of the delta method.

Lemma F.6 (Rearranging Donsker sets). Suppose F = F1 ∪ . . .∪FK is P -Donsker, and
√
n(Pn−

P )
L→ G in `∞(F). The map φ : `∞(F)→ `∞(F1)× . . .× `∞(FK) defined pointwise by

φ(g)(f1, . . . , fK) = (g(f1), . . . , g(fK))

is fully Hadamard differentiable at any P ∈ `∞(F) tangentially to `∞(F), and is its own derivative:

φ′P : `∞(F)→ `∞(F1)× . . .× `∞(FK), φ′P (h) = φ(h)

and hence

√
n(φ(Pn)− φ(P ))

L→ φ(G) in `∞(F1)× . . .× `∞(FK)

Proof. The map φ is linear; let a, b ∈ R and g, h ∈ `∞(F) and notice that for any (f1, . . . , fK) ∈
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F1 × . . .×FK ,

φ(ag + bh)(f1, . . . , fK) = ((ag + bh)(f1), . . . , (ag + bh)(fK))

= (ag(f1) + bh(f1), . . . , ag(fK) + bh(fK))

= a(g(f1), . . . , g(fK)) + b(h(f1) . . . , h(fK))

= aφ(g)(f1, . . . , fK) + bφ(h)(f1, . . . , fK)

= (aφ(g) + bφ(h))(f1, . . . , fK)

hence φ(ag + bh) = (aφ(g) + bφ(h)), as these functions agree on all of F1 × . . .×FK .
Next observe that φ is continuous. Recall that the product topology on `∞(F1)× . . .× `∞(FK)

is generated by the norm

‖(g1, . . . , gK)− (h1, . . . , hK)‖F1×...×FK = max{‖g1 − h1‖F1 , . . . , ‖gK − hK‖FK}

see Aliprantis & Border (2006) lemma 3.3. Thus

‖φ(g)− φ(h)‖F1×...×FK = max

{
sup
f1∈F1

|g(f1)− h(f1)|, . . . , sup
fK∈FK

|g(fK)− h(fK)|

}
= ‖g − h‖F

and hence φ is continuous.
Since φ is linear and continuous, it is (fully) Hadamard differentiable at any point tangentially

to `∞(F) and is its own Hadamard derivative; indeed, for an: for all sequences hn → h ∈ `∞(F)
and tn ↓ 0 ∈ R, one has g + tnhn ∈ `∞(F) and

lim
n→∞

∥∥∥∥φ(g + tnhn)− φ(g)

tn
− φ(h)

∥∥∥∥
F1×...×FK

= lim
n→∞

‖φ(hn)− φ(h)‖F1×...×FK = 0

Finally, since
√
n(Pn − P )

L→ G in `∞(F), the functional delta method (Van der Vaart (2000)

theorem 20.8) implies
√
n(φ(Pn)− φ(P ))

L→ φ(G) in `∞(F1)× . . .× `∞(FK).

Although the following lemma and its corollary are stated for functions taking values in R, by

combining it with lemma F.5 a similar result can be obtained for functions taking values in RM ,

similar to the setting of lemma F.1. Compare van der Vaart & Wellner (1997) lemma 3.9.25.

Lemma F.7 (Hadamard differentiability of maps between bounded function spaces). Let f : Df ⊆
RK → R. Suppose that

1. f is continuously differentiable, and

2. the gradient of f ,

∇f : Df → RK , ∇f(x) =
(
∂f
∂x1

(x) . . . ∂f
∂xK

(x)
)ᵀ
,

is uniformly continuous.
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Define the subset of `∞(T )K taking values in Df ,

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K

and the subset of `∞(T,Df ) such that composition with f defines a bounded function:

`∞f (T,Df ) =

{
g ∈ `∞(T,Df ) ; sup

t∈T
|f(g(t))| <∞

}
Then F : `∞f (T,Df ) → `∞(T ) defined pointwise with F (g)(t) = f(g(t)) is (fully) Hadamard

differentiable tangentially to `∞(T )K at any g0 ∈ `∞f (T,Df ), with derivative F ′g0
: `∞(T )K → `∞(T )

given pointwise by

F ′g0
(h)(t) = [∇f(g0(t))]ᵀ h(t) =

K∑
k=1

∂f

∂xk
(g0(t))hk(t)

Proof. The domain of `∞f (T,Df ) ensures that F : `∞f (T,Df )→ `∞(T ) is well defined.

Let {hn}∞n=1 ⊆ `∞(T )K and {rn}∞n=1 ⊆ R such that hn → h ∈ `∞(T )K , rn → 0, and g0 +rnhn ∈
`∞f (T,Df ) for each n. For each n and each t ∈ T , apply the mean value theorem to find λn(t) ∈ (0, 1)

such that gn(t) := λn(t)(g0(t) + rnhn(t)) + (1− λn(t))g0(t) satisfying19

f(x0(t) + rnhn(t))− f(x0(t)) = [∇f(gn(t))]ᵀ (x0(t) + rnhn(t)− x0(t))

= rn [∇f(gn(t))]ᵀ hn(t)

Use this to see that for all n and all t ∈ T ,∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣ = |∇f(gn(t))ᵀhn(t)−∇f(g0(t))ᵀh(t)|

≤ |∇f(gn(t))ᵀhn(t)−∇f(g0(t))ᵀhn(t)|+ |∇f(g0(t))ᵀhn(t)−∇f(g0(t))ᵀh(t)|
≤ ‖∇f(gn(t))−∇f(g0(t))‖ × ‖hn(t)‖+ ‖∇f(g0(t))‖ × ‖hn(t)− h(t)‖

where the first inequality is by the triangle inequality and the second by Cauchy-Schwarz in RK .
It follows that

sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣
≤ sup

t∈T
‖∇f(gn(t))−∇f(g0(t))‖ × sup

t∈T
‖hn(t)‖ (102)

+ sup
t∈T
‖∇f(g0(t))‖ × sup

t∈T
‖hn(t)− h(t)‖ (103)

19The mean value theorem being invoked here is the standard result: for any x, x̃ ∈ Df , let gx,x̃ : [0, 1] → R be
given by gx,x̃(λ) = f(λx̃ + (1− λ)x). Then gx,x̃(0) = f(x) and gx,x̃(1) = f(x̃), and the mean value theorem tells us
that there exists λ ∈ (0, 1) such that

f(x̃)− f(x) = gx,x̃(1)− gx,x̃(0) = g′x,x̃(λ)(1− 0) = [∇f(λx̃+ (1− λ)x)]ᵀ (x̃− x)
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Consider the term in (102). Recall that for some λn(t) ∈ (0, 1),

gn(t) = λn(t)(g0(t) + rnhn(t)) + (1− λn(t))g0(t)

= λn(t)rnhn(t) + g0(t)

and so
‖gn − g0‖T = sup

t∈T
‖λn(t)rnhn(t)‖ ≤ |rn| × sup

t∈T
‖hn(t)‖ → 0

where the limit claim follows from supt∈T ‖hn(t)‖ = ‖hn‖T → ‖h‖T <∞ (implying {supt∈T ‖hn(t)‖}∞n=1

is bounded) and rn → 0. Thus gn → g0 in `∞(T )K . Using this and uniform continuity of
∇f : Df → RK , lemma F.1 implies ∇f(gn)→ ∇f(g0) in `∞(T )K , i.e.

‖∇f(gn)−∇f(g0)‖T = sup
t∈T
‖∇f(gn(t))−∇f(g0(t))‖ → 0

Using once again that {supt∈T ‖hn(t)‖}∞n=1 is bounded, this implies

lim
n→∞

sup
t∈T
‖∇f(gn(t))−∇f(g0(t))‖ × sup

t∈T
‖hn(t)‖ = 0 (104)

Now consider the term in (103). supt∈T ‖∇f(g0(t))‖ <∞ because ‖∇f(·)‖ is uniformly continu-
ous and supt∈T ‖g0(t)‖ <∞, just as in the proof of lemma F.1. Furthermore, limn→∞ supt∈T ‖hn(t)−
h(t)‖ = 0, so

lim
n→∞

sup
t∈T
‖∇f(g0(t))‖ × sup

t∈T
‖hn(t)− h(t)‖ = 0 (105)

Combining (102) through (105) we obtain

lim
n→∞

sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣ = 0

which concludes the proof.

Remark F.2. Lemma F.7 specifies the domain of F as `∞f (T,Df ) = {g ∈ `∞(T,Df ) ; supt∈T |f(g(t))| <∞}.
It is often straightforward to clarify the space `∞f (T,Df ) in particular cases; for example, `∞f (T,Df ) =
`∞(T,Df ) if f satisfies any one of the following: (i) f is bounded, (ii) f is Lipschitz, or (iii) f is
bounded on bounded subsets (e.g., f(x) = x is bounded on bounded subsets) See also lemma C.6.

Lemma F.7 requires ∇f(·) be uniformly continuous, but this often stronger than necessary.
When hoping to argue F : `∞f (T,Df ) → `∞(T ) defined pointwise with F (g)(t) = f(g(t)) is (fully)
Hadamard differentiable at g0 ∈ `∞f (T,Df ), it suffices that f is continuously differentiable on a
closed set slightly larger than the (bounded) range of g0. Compactness of this expanded range and
the fact that continuous functions on compact sets are uniformly continuous allow us to apply the
preceding lemma. This logic is formalized in the following corollary.

Corollary F.8 (Hadamard differentiability of maps between bounded function spaces, corollary).
Let f : Df ⊆ RK → R be continuously differentiable.

Define the subset of `∞(T )K taking values in Df ,

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K
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and the subset of `∞(T,Df ) such that composition with f defines a bounded function:

`∞f (T,Df ) =

{
g ∈ `∞(T,Df ) ; sup

t∈T
|f(g(t))| <∞

}
Let g0 ∈ `∞f (T,Df ), and suppose that for some δ > 0,

g0(T )δ ≡
{
x ∈ RK ; inf

t∈T
‖x− g0(t)‖ ≤ δ

}
⊆ Df .

Then F : `∞f (T,Df ) → `∞(T ) defined pointwise by F (g)(t) = f(g(t)) is (fully) Hadamard dif-

ferentiable at g0 tangentially to `∞(T )K , with derivative F ′g0
: `∞(T )K → `∞(T ) given pointwise

by

F ′g0
(h)(t) = [∇f(g0(t))]ᵀ h(t) =

K∑
k=1

∂f

∂xk
(g0(t))hk(t)

Proof. Let f̃ : g0(T )δ → R be the restriction of f to g0(T )δ. Note that f̃ is continuously differen-
tiable on the compact g0(T )δ ⊆ RK , hence ∇f̃ is in fact uniformly continuous by the Heine-Cantor
theorem. Apply lemma F.7 to find that

F̃ : `∞f (T, g0(T )δ)→ `∞(T ), F̃ (g)(t) = f̃(g(t)) = f(g(t))

is (fully) Hadamard differentiable at g0, with derivative F̃ ′g0
: `∞(T )K → `∞(T ) given pointwise by

F̃ ′g0
(h)(t) = [∇f(g0(t))]ᵀ h(t). By definition, this means that for any sequences {h̃n}∞n=1 ⊆ `∞(T )K

and {r̃n}∞n=1 ⊆ R such that h̃n → h̃ ∈ `∞(T )K , r̃n → 0, and g0 + r̃nh̃n ∈ `∞(T, g0(T )δ) for all n,

lim
n→∞

∥∥∥∥∥ F̃ (g0 + r̃nh̃n)− F̃ (g0)

r̃n
− F ′g0

(h̃)

∥∥∥∥∥
T

= 0 (106)

Let {hn}∞n=1 ⊆ `∞(T )K , {rn}∞n=1 ⊆ R be such that hn → h ∈ `∞(T )K , rn → 0, and g0 + rnhn ∈
`∞(T,Df ) for all n. It suffices to show that∥∥∥∥F (g0 + rnhn)− F (g0)

rn
− F ′g0

(h)

∥∥∥∥
T

= sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
− [∇f(g0(t))]ᵀ h(t)

∣∣∣∣
has limit zero.

Notice that g0 + rnhn → g0 in `∞(T )K , so for some N we have that for all n ≥ N , ‖g0 + rnhn−
g0‖T = rn supt∈T ‖hn‖ < δ. It follows that for k ∈ N, g0 + rk+Nhk+N ∈ `∞(T, g0(T )δ) and hence
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r̃k = rk+N and h̃k = hk+N are sequences for which (106) applies. Therefore,

lim
n→∞

∥∥∥∥F (g0 + rnhn)− F (g0)

rn
− F ′g0

(h)

∥∥∥∥
T

= lim
k→∞

∥∥∥∥F (g0 + rk+Nhk+N )− F (g0)

rk+N
− F ′g0

(h)

∥∥∥∥
T

= lim
k→∞

∥∥∥∥∥ F̃ (g0 + r̃kh̃k)− F̃ (g0)

r̃k
− F ′g0

(h)

∥∥∥∥∥
T

= 0

Where the second equality follows from F̃ (g0 + r̃kh̃k) = F (g0 + rk+Nhk+N ) and F̃ (g0) = F (g0).

The following lemma is lemma S.4.9 from Fang & Santos (2019), but the authors state it for a

metric space. The same proof works to show that statement holds in semimetric spaces as well.20

The statement and proof are included here for completeness.

Lemma F.9 (Hadamard directional differentiability of supremum). (Fang & Santos (2019) lemma
S.4.9)

Let (A, d) be a compact semimetric space, A a compact subset of A, and

ψ : `∞(A)→ R, ψ(p) = sup
a∈A

p(a)

Then ψ is Hadamard directionally differentiable at any p0 ∈ C(A, d) tangentially to C(A, d).
ΨA(p0) = arg maxa∈A p0(a) is nonempty, and the directional derivative is given by

ψ′p0
: C(A, d)→ R, ψ′p0

(p) = sup
a∈ΨA(p0)

p(a)

Proof. Let p0 ∈ C(A). Since A is compact, ΨA(p0) = arg maxa∈A p0 is nonempty (Aliprantis &
Border (2006) theorem 2.43). Let {pn}∞n=1 ⊆ `∞(A) and {tn}∞n=1 ⊆ R+ such that pn → p ∈ C(A)

20Some useful facts about semimetrics: (i) A semimetric defines a topology that is first countable (Aliprantis &

Border (2006) pp. 70, 72), but this topology is not second countable or Hausdorff. The limits of sequences are

not guaranteed to be unique. (ii) In a semimetric space, sequences still characterize the closures of sets, as well as

continuity and semicontinuity of functions (Aliprantis & Border (2006), theorems 2.40 and 2.42 on pp. 42-43). (iii) A

subset of a semimetric space is compact if and only if it is complete and totally bounded (van der Vaart & Wellner

(1997), footnote on p. 17).

114



and tn ↓ 0. Notice that∣∣∣∣ψ(p0 + tnpn)− ψ(p0)

tn
− ψ′p0

(p)

∣∣∣∣
=

∣∣∣∣∣supa∈A {p0(a) + tnpn(a)} − supa∈A p0(a)

tn
− sup
a∈ΨA(p0)

p(a)

∣∣∣∣∣
=

∣∣∣∣∣supa∈A {p0(a) + tnpn(a)} − supa∈ΨA(p0) p0(a)

tn
− sup
a∈ΨA(p0)

p(a)

∣∣∣∣∣
≤

∣∣∣∣∣supa∈ΨA(p0) {p0(a) + tnp(a)} − supa∈ΨA(p0) p0(a)

tn
− sup
a∈ΨA(p0)

p(a)

∣∣∣∣∣ (107)

+

∣∣∣∣supa∈A {p0(a) + tnpn(a)} − supa∈A {p0(a) + tnp(a)}
tn

∣∣∣∣ (108)

+

∣∣∣∣supa∈A {p0(a) + tnp(a)} − supa∈ΨA(p0) {p0(a) + tnp(a)}
tn

∣∣∣∣ (109)

First, consider (107). Notice that p0 is flat on ΨA(p0), so∣∣∣∣∣supa∈ΨA(p0) {p0(a) + tnp(a)} − supa∈ΨA(p0) p0(a)

tn
− sup
a∈ΨF (p0)

p(a)

∣∣∣∣∣
=

∣∣∣∣∣ sup
a∈ΨA(p0)

p(a)− sup
a∈ΨA(p0)

p(a)

∣∣∣∣∣ = 0 (110)

Next consider (108). Since p0 + tnpn and p0 + tnp are elements of `∞(A), lemma F.3 implies∣∣∣∣supa∈A {p0(a) + tnpn(a)} − supa∈A {p0(a) + tnp(a)}
tn

∣∣∣∣
≤ sup

a∈A
|pn(a)− p(a)| ≤ ‖pn − p‖A → 0 (111)

Now consider (109). Notice that

ϕ : C(A)⇒ A, ϕ(g) = A

is a trivially continuous correspondence with nonempty, compact values. Furthermore,

Γp0 : C(A)×A→ R, Γp0(g, a) = p0(a) + g(a)

is continuous on all of C(A)×A.21 Thus supa∈A {p0(a) + g(a)} = maxa∈ϕ(g) Γp0(g, a) satisfies the
conditions of the Berge Maximum Theorem (Aliprantis & Border (2006) theorem 17.31), implying
the argmax corresondence Φ : C(A)⇒ A given by Φ(g) = ΨA(p0 + g) is compact valued and upper

21To see this, recall that the topology of C(A) × A is generated by the semimetric ρ((g, a), (g̃, ã)) =
max {‖g − g̃‖A, d(a, ã)} (Aliprantis & Border (2006) lemma 3.3). Let ε > 0 and g ∈ C(A). Note that each ele-
ment of C(A) is a continuous function defined on a compact set, and is hence uniformly continuous by the Heine-
Cantor theorem (lemma F.10). Use uniform continuity of p0 and g to choose δp0 , δg > 0 such that d(a, ã) < δp0
implies |p0(a) − p0(ã)| < ε/3, and d(a, ã) < δg implies |g(a) − g(ã)| < ε/3. Let δ = min{δp0 , δg, ε/3}, and no-
tice that ρ((g, a), (g̃, ã)) < δ implies |p0(a) − p0(ã)| < ε/3, |g(a) − g(ã)| < ε/3, and ‖g − g̃‖A < ε/3, and hence
|Γp0(g, a)− Γp0(g̃, ã)| = |p0(a) + g(a)− p0(ã)− g̃(ã)| ≤ |p0(a)− p0(ã)|+ |g(a)− g(ã)|+ |g(ã)− g̃(ã)| < ε.
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hemicontinuous.
Let ΨA(p0)ε =

{
a ∈ A ; inf ã∈ΨA(p0) d(a, ã) ≤ ε

}
. Upper hemicontinuity and ‖tnp‖A → 0 implies

that there exists δn ↓ 0 such that ΨA(p0 + tnp) ⊆ ΨA(p0)δn .22

It follows that∣∣∣∣supa∈A {p0(a) + tnp(a)} − supa∈ΨA(p0) {p0(a) + tnp(a)}
tn

∣∣∣∣
=

1

tn

(
sup

a∈ΨA(p0)δn
{p0(a) + tnp(a)} − sup

a∈ΨA(p0)
{p0(a) + tnp(a)}

)

Let as,n ∈ arg maxa∈ΨA(p0) {p0(a) + tnp(a)}, which is nonempty because ΨA(p0) is compact and

p0(a) + tnp(a) is continuous. Let ab,n ∈ ΨA(p0 + tnp) ⊆ ΨA(p0)δn satisfy d(ab,n, as,n) ≤ δn, and
notice that ΨA(p0 + tnp) ⊆ ΨA(p0)δn implies supa∈ΨA(p0)δn {p0(a) + tnp(a)} = p0(ab,n) + tnp(ab,n).
So,

1

tn

(
sup

a∈ΨA(p0)δn
{p0(a) + tnp(a)} − sup

a∈ΨA(p0)
{p0(a) + tnp(a)}

)
= p0(ab,n) + tnp(ab,n)− p0(as,n)− tnp(as,n)

≤ p(ab,n)− p(as,n)

where the inequality follows because as,n maximizes p0 over A while ab,n may not. Furthermore,
d(ab,n, as,n) ≤ δn implies

p(ab,n)− p(as,n) ≤ sup
a,a′∈A, d(a,a′)≤δn

{
p(a)− p(a′)

}
22To see this, recall the definition of Φ being upper hemicontinuous (uhc) given in Aliprantis & Border (2006),

definition 17.2: Φ is uhc at g if for every neighborhood U of Φ(g), the upper inverse image

Φu(U) = {h ∈ C(A) ; Φ(h) ⊆ U}

is a neighborhood of g, i.e. g is in the interior of Φu(U), so there exists η > 0 such that ‖g−g̃‖A < η implies g̃ ∈ Φu(U),
and hence Φ(g̃) ⊆ U . Since ΨA is uhc and ΨA(p0)ε is a neighborhood of ΨA(p0), whenever ‖p0+tnp−p0‖A = tn‖p‖A <
ε we have that Ψ(p0 + tnp) ⊆ ΨA(p0)ε.

Let

δn = max
a∈ΨA(p0+tnp)

min
ã∈ΨA(p0)

d(a, ã)

The inner min is attained because d is continuous and the feasible set is compact. a 7→ maxã∈ΨA(p0){−d(a, ã)} is con-
tinuous by the Maximum Theorem (Aliprantis & Border (2006) theorem 17.31), which implies a 7→ minã∈ΨA(p0) d(a, ã)
is continuous. The outer max is then attained because the feasible set is compact. Notice that δn that ΨA(p0 +tnp) ⊆
ΨA(p0)δn .

Suppose for contradiction that δn 6→ 0. Then there exists ε > 0 and a subsequence {δn′}∞n′=1 such that δn′ ≥ ε
for all n′, which implies ΨA(p0 + tn′p) 6⊆ ΨA(p0)ε/2 for all n′. ΨA(p0)ε/2 is a neighborhood of ΨA(p0) = Φ(0),
and Φ is uhc at 0, hence Φu(ΨA(p0)ε/2) is a neighborhood of 0 ∈ C(A). So for some η > 0, ‖tn′p‖ < η implies
Φ(tn′p) = ΨA(p0 + tn′p) ⊆ ΨA(p0)ε/2. Since tn′p → 0 ∈ C(A), there exist n′ with ‖tn′p‖A < η, and for such n′ we
have ΨA(p0 + tn′p) ⊆ ΨA(p0)ε/2 by upper hemicontinuity. This is the desired contradiction; therefore δn → 0.

If δn does not converge monotonically to zero, set δ̃n = sup{δk ; k ≥ n}. Note that δ̃n ↓ 0 and δ̃n ≥ δn, the latter

of which implies ΨA(p0 + tnp) ⊆ ΨA(p0)δ̃n .
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and hence ∣∣∣∣supa∈A {p0(a) + tnp(a)} − supa∈ΨA(p0) {p0(a) + tnp(a)}
tn

∣∣∣∣
≤ sup

a,a′∈A, d(a,a′)≤δn

{
p(a)− p(a′)

}
→ 0 (112)

Where the limit claim follows from p being a continuous function defined on a compact set, and so
is in fact uniformly continuous by the Heine-Cantor theorem (lemma F.10).

To summarize,∣∣∣∣ψ(p0 + tnpn)− ψ(p0)

tn
− ψ′p0

(p)

∣∣∣∣
≤

∣∣∣∣∣supa∈ΨA(p0) {p0(a) + tnp(a)} − supa∈ΨA(p0) p0(a)

tn
− sup
a∈ΨA(p0)

p(a)

∣∣∣∣∣
+

∣∣∣∣supa∈A {p0(a) + tnpn(a)} − supa∈A {p0(a) + tnp(a)}
tn

∣∣∣∣
+

∣∣∣∣supa∈A {p0(a) + tnp(a)} − supa∈ΨA(p0) {p0(a) + tnp(a)}
tn

∣∣∣∣
along with (110), (111), and (112) implies that ψ is Hadamard directionally differentiable at any
p0 ∈ C(A) tangentially to any p ∈ C(A), with ψ′p0

(p) = supa∈ΨA(p0) p(a).

F.3 Other

The Heine-Cantor theorem is usually stated for metric spaces. As it is applied in the proof of

lemma F.9 to a setting with semimetric spaces, the statement and standard proof are included here

to make clear the result applies to semimetric spaces as well.

Lemma F.10 (Heine-Cantor theorem). Let (X, dX) and (Y, dY ) be semimetric spaces, X compact,
and f : X → Y continuous. Then f is in fact uniformly continuous.

Proof. Let ε > 0. For each x ∈ X, use continuity of f to choose δx such that

dX(x, x′) < 2δx =⇒ dY (f(x), f(x′)) < ε/2

Let Bd(x) ⊆ X be the open ball of radius d centered at x. Then
⋃
x∈X Bδx(x) is an open cover

of X. By compactness of X, there exists x1, . . . , xn such that
⋃n
i=1Bδxi (xi) covers X. Let δ =

mini∈{1,...,n} δxi . As the minimum of a finite number of positive real numbers, we have δ > 0.
Suppose dX(x, x′) < δ. Since

⋃n
i=1Bδxi (xi) covers X, there exists k ∈ {1, . . . , n} such that

x ∈ Bδxk (xk). Notice that

dX(x′, xk) ≤ dX(x′, x) + dX(x, xk) < δ + δxk ≤ 2δxk
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and thus dX(x, x′) < δ implies dX(x′, xk) < 2δxk and dX(x, xk) < δxk < 2δxk for whichever k is
such that x ∈ Bδxk (xk). Then the definition of δxk implies

dY (f(x), f(x′)) ≤ dY (f(x), f(xk)) + dY (f(xk), f(x′)) < ε/2 + ε/2 = ε
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