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Introduction

The fundamental problem of causal inference

It is impossible to observe the [treated outcome] and [untreated outcome] on
the same unit and, therefore, it is impossible to observe the effect...
(Holland, 1986)

» Parameters of the joint distribution of potential outcomes are not point
identified.

» This paper
® shows optimal transport characterizes sharp bounds,
® accomodates noncompliance through a standard IV model, and
® provides simple, computationally convenient estimators.
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The fundamental problem of causal inference
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Untreated outcome, Yy

> Never observe (Y1, Yo), because each unit is treated (D = 1) or untreated (D = 0):
Observed outcome Y = DY + (1 — D) Yo
» The marginal distributions Pi and Py are identified - but have less information.

» For example, what share of units benefit from treatment?
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Example 1: the share benefiting from treatment
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Untreated outcome, Yy

» Many joint distributions 7 share marginal distributions P, Fo:

|_|(P1, Po) = {71' LT = P17 T = Po}

» Optimizing P(Y1 > Yo) over MN(Py, Py) implies bounds:

min  Pr(Y1 > Yo) max

P=(Y1 > Yo)

7eN(P1,Po) 7eN(P1,Po)
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Example 2: who sees larger benefits from treatment?
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UntreaDtAed outcogme, Yo Untreaﬂf‘ed outcﬂgme, Yo
» Do those with smaller Yp see larger Y1 — Y57
Cov(Y1 — Yo, Yo) _ E[(Yr — Y0) Yo] — (E[Y1] — E[Y0])E[Yo]

OLS slope = Var(Ya) E[YE] — (E[Yo])?

» Optimizing E[(Y1 — Yo) Yo] over M(P1, Py) implies bounds on OLS slope:

<oy Ex (Y1 = Y0) Yol weM g B (Y1 = Yo) Yol
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This paper

» Parameter of interest:
v=g(0,n) €R,
where 6 = E[c(Y1. Yo)] € R and 5 = (Elm(Y2)]. Elo(¥o)]) € R<+.

® Example 3: v = Var(Y1 — Yo) = E[(Y1 — Y0)’] — (E[Y4] — E[Y0])?
» Characterize sharp identified set with optimal transport:
OT.(P1,Py) = in  E;[c(Y1, Y.
(P1, Po) reimin [c(Y1, Yo)]

» Propose and study sample analogue estimators of the bounds.

» Empirical application: who sees larger benefits from the NSW job training?
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Related literature

> Joint distribution of potential outcomes
® CDF or quantiles of Y; — Yp: Manski (1997), Heckman et al. (1997), Firpo (2007),
Fan and Park (2010), Fan and Park (2012), Firpo and Ridder (2019),
Callaway (2021), Frandsen and Lefgren (2021).
® General methods: Russell (2021) Fan et al. (2023), Ji et al. (2023), this paper.

» Optimal transport in econometrics
® Partial identification: Galichon and Henry (2011), Ekeland et al. (2010)
® Causal inference: Dunipace (2021), Gunsilius and Xu (2021), Torous et al. (2021)
® Joint distribution of (Y1, Yp): Ji et al. (2023), this paper.

= This paper contributes identification and estimators that

i. cover a large class of parameters while remaining tractable,
ii. allow for simple bootstrap inference, and
iii. accomodate noncompliance through a standard IV model.
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Setting

» For this talk, focus on unconfoundedness.

Assumption 1 (Setting, simplified) {Y;, Di, Xi}i_; is an i.i.d. sample with
YeYCR, D e {0,1}, XeX={x,...,xm}
generated from a distribution satisfying
(i) Potential outcomes: Y = DY1 + (1 —D)Yo

(i) Unconfoundedness: (Y1, Yo) L D | X
(iii) P(D =d,X = x) > 0 for each (d, x)

» In the paper, binary IV satisfying monotonicity condition (Imbens and
Angrist, 1994).

Setting w/IV
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Parameter class

» Parameter of interest:
v=2g(0,n) €R
where 6 = E[c(Y1, Yo)] € R and 1 = (E[m(Y1)], E[no( Yo)]) € Rt +Ko

Assumption 2 (Cost function) Either
(i) ¢(y1,y0) is Lipschitz continuous and ) is compact, or

(ii) c(y1,5) = 1{y1 — yo < 6} and the CDFs Fy(y) = P(Ya <y | X = x) are
continuous.

Remark: If c(y1,y0) = 1{y1 — yo < 8} but Fy)(-) are not continuous, inference
remains valid for an outer identified set.
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Parameter class

» Parameter of interest:
vy=2g(0,n) €R
where 6 = E[c(Y1, Yo)] € R and 1 = (E[m(Y1)], E[no( Yo)]) € RFi+Fo,

Assumption 3 (Function of moments, simplified)
(i) m(Y) and no(Y) have finite second moments,
(i) g(-,-) is continuously differentiable, and

(i) g(-,m) is monotonic.

Remark: Assumption 3 (jii) is relaxed in the paper.

Full assumption 3
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Parameter class: motivating examples

v

Share benefiting: P(Y1 > Yp)
® Allcott et al. (2020): deactivating Facebook affects subjective well-being.

v

Share benefiting above cost: P(Y; — Yy > cost)
® Friebel et al. (2023): employee referral programs increase grocery store profit.

v

Who benefits more from treatment? Cov(Y; — Yp, Yo)/Var(Yo)
® Application: NSW job experience increases post-training annual income.

v

Yi—Yo
Yo

® This parameter is often approximated with E[log(Y1) — log(Y0)]-

Expected percent change: E {

v

Quantiles of Y7 — Yj

® Median is more representative than mean when distribution is skewed.
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Optimal transport
OTe(P1,Po) = min | Exlc(Y1, Yo)]

» Choose a joint distribution with given marginals to minimize costs.
® Feasible set: |_|(P1, Po) = {71' LM = P1, Ty = Po}

® Cost function: c(y1,yo)

» Often interpreted in other contexts, but here intended literally.

» Attained under mild conditions.
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Identification without covariates
> {Y;, D;}"_; identifies marginal distributions P; and Py.
> Identified set for P; g is set of joint distributions with marginals Py, Py:

I'I(Pl, Po) = {71' LT = P1,7To = PQ}

» Bounds on 6 = Ep, [c( Y1, Yo)] for continuous c:

oL = in  Ex[c(Yi, Yo)l, ot = E.[c(Y4, Y,
emin [c(Y1, Y0)] e, [c(Y1, Y0)]
= OT(P1, Po), = —O0T_c(P1, Po)

> Bounds on v = g(6,n):

L . H
= min t,n), = ma t,
¥ tewgﬁH]g( n) ¥ tE[GL;H]g( n)
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|dentification with covariates
» {Y;, D;, X;}7_, identifies marginal conditional distributions P, and Pyj.

Yd|X:XNPd‘X

> Identified set for P; g/, is set of joint distributions with marginals Py, Py|x:
N(Pyjx; Pojx) = {m10x : T1jx = P1jx, Topx = Pojx}

::9)(
» Bounds on 0 = Ep, ,[c(Y1, Y0)] = E[Ep, ,[c(Y1, Yo) | X]] for continuous c:

0)& = OTC(Pl\xv POIX)7 9:’ = _OT—C(P1|X7 POlX)
ot = E[6L], 0" = E[0%]
» Bounds on v = g(6,n):

L : H
= min t,n), = ma t,
v te[eLl,oH] g(t.n) v tG[GL,);H] g(t.n)
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Covariates tighten identified bounds

» Covariates tighten bounds,

OT.(Py, Py) < 6%, 0" < —OT_.(Py, Po).

® Why? The optimization has additional constraints.

® 9t = E[OT(Pyx, Pojx)] looks for € M(Py, Py) also matching (Pi|x, Pojx)-

» Bounds on P(Y; > Yp): not sharp [0.25, 1], sharp: [0.44,0.68].

20 = P1=(P1|x +P1x)2
: == Py =(Po|x, +Po|x,)2
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Theorem: identification

» For continuous c,

Bounds on 6, : 0% = OT.(Pyjx, Popx), 0 = —OT_(Pujx, Pojx)

Boundson 6 :  6- = E[A%] 0" = E[04]
. L _ : H _
Boundsony: "= i g(t,n), ' = R g(t,n)

Theorem (identification)
Suppose assumptions 1, 2, and 3 are satisfied. Then the sharp identified set for

v =g(8,n) is [v5, 7).
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Optimal transport

OTc(P1, Po) = etmin Er[c(Y1, Yo)] T (Jmax, Ep, [p(Y1)] + Epy[¥(Y0)]

Strong

Duality Dual Problem

Primal Problem

N(Py, Po) = {m: 71 = P1, m0 = Po} & = {(o, %) : py1) + ¥(¥0) < c(y1,¥0)}

» The primal problem is used in identification.
» The dual problem is used for estimation.

» Strong duality holds under the cost function assumptions. Each problem is
attained, too.
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Estimators: recall identification

» Distributions of Yy | X = x ~ Pg:

» Using strong duality,

OTc(Pix, Pojx) = (max, Ep, [o(Y1)] + Epy, [¥(Y0)]-

> The identified set for v is [y*, "], where for ¢ continuous,

0 = OT.(Pyx, Pojx), 0 = —OT_c(Py, Pojx)
o' = E[04], 0" = E[6X]
L . H
= t: ) = t’
T el £ T o )
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Estimators: sample analogues

> Estimate Py, with sample analogues I5d|x:

5 i F(OY)L{D = d, X; = x}]

Ep, [F(Ya)] = Ly 1{Di=d, X; = x}

» Using strong duality,

OT.(Pr. Po) = max Ep, [o(Ya)] + Ep, [(Yo)].

(p,9)Edc

|x

> Estimate the endpoints of [y}, "] with plug-in estimators. For ¢ continuous,

AL ~ ~ Ay ~ ~
ex - OTC(P1|X7 POlX)7 ax - _OT—C(Pl\xv P0|X)
n n
A 1= A A 1= Ay
= ; E 9X,-7 0" = ; E 9X,»
i=1 i=1
~L . ~ ~H
"= min g(t,7), 47 = max g(t,1)
te[fL,6H] te[fL,6H]
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Estimators: computing OTC(/51|X, :50|X)
OTc(Pyix, Poix) = ST, Ep, le(M)] + Ep, [(Y0)]-

> To evaluate E,sdlx[f( Yq4)] for any function f, only the values f; = f(Y;) matter.

]].{D,' = d,X,' = X}/n
}1:1 {D;=d,X; = x}

Eﬁd‘x[f(yd)] = de,x,i X fi, Wd,x,i = T

» Computating OTC(Isl‘X, lso‘x) is straightforward linear programming:

OTc(P1|x7 P0|>< = wmtbai(" ZWIXI X @i + ZWOXI X 1,[)1

sit. i+ < c(Y;, Y;) forall 1 <i,j<n,

» Dimension is reduced by ignoring j, ¥;, and constraints where wq i = 0.
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Convergence in distribution: theorem

» Let P be the distribution of an observation, and P, the empirical distribution.

(34,4 = T(Pa), (+H4") = T(P)

Theorem (Weak convergence)

Suppose assumptions 1, 2, and 3 hold. Then
AL 4 L
Va((354") = (v, 7") = Te(G)

where \/n(P, — P) 5 G and Tp(-) is the Hadamard directional derivative of T(-) at P.
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Inference: bootstrap

» Estimating the asymptotic distribution is necessary for inference.

» The bootstrap provides an attractive procedure.
® Bootstrap draw: {Y7*, D}, X*}"_;
® Bootstrap empirical distribution: P},

1{D;=d,X*=x}/n

> Compute T(P;) the same way as T(P,): let wy, ;= 1 S D —d X o]
n 2ojm TP =dX=

OTC(F\)]).‘(‘X7 'ﬁg\x) = {<pmwa)}(" Zwl x,ipi + Zwo X, Vi

sit. i + 9 < c(Y:,Y)) for all1<i,j<n
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Inference: bootstrap

Assumption 4 (Unique solutions, informal) For each instance of optimal transport
in T(P), the solution to the dual problem is suitably unique.

Theorem (Bootstrap consistency)

Suppose assumptions 1, 2, 3, and 4 hold. Then T}(G) is bivariate normal, and
conditional on {Y;, Dj, Xi}1_;,

Va(T(P;) — T(B,)) & TH(G)

in outer probability.
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Inference: bootstrap

> Bootstrap works with assumption 4 (unique solutions)...when does that happen?

Lemma (Unique solutions) Suppose that
(i) c(y1, yo) is continuously differentiable, and
(i) for each x, Supp(Ya | X =x) = [yf,x,yc‘,’,x] is bounded.

then assumption 4 holds.

» Assumption 4 may hold without this lemma’s conditions.
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Inference: bootstrap alternative

» Only require assumptions 1, 2, and 3 to claim

Va((3H A" = (54) B TH(G).

> But without assumption 4, T;(G) may not be bivariate Normal,

— The bootstrap is not consistent.

» The paper shows a consistent alternative.

® Follows Fang and Santos (2019): estimating the derivative Tp(-).

® Implementation is more involved, but still computationally tractable.
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Simulations: parameter and DGP

» Parameter v = 6 = P(Y1 — Yo < 4) has simple bounds:
" = sup{Fi(y) = Fo(y — 8)}, =1+ inf {F1(y) = Foly = 0)}
y

» For simplicity: no X, P(D = 1) = 1/2, distributions of Y1, Yo:

10 — Fyly—06) 0.15 — Faly)=Foly - 5)
— Fly)

o8] 0.10

0.05
0.6

0.00
0.4 0.05 4
0.2 —0.10 4

-0.15 4

0.0

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

» Unique solutions = bootstrap is valid.
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Simulations: confidence set

> Asymptotic 1 — c confidence set for [y, y"]:

(i) Using {Y;, D;j, X;}"_,, compute estimators:

(3,41 = T(n)

(i) Foreach b=1,...,B, draw {Y;",, D?:b’Xin}?:l to define P} | and compute:

(35":35 ™) = T(P} )
(iii) Let &—_q be the 1 — & quantile of {max{+/n(3t* — %), —v/n(35* —4")}}E_,, and

Cl = [;\YL - 61704/\/F7 /)\/H + 6lfaz/\/ﬁl
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Simulations: finite sample bias and correction

» Cl has exact asymptotic coverage. What about small samples?

® max over sample averages is biased upward (Haile and Tamer, 2003).

® Leads to [§%,4"] that tend to be “too narrow” in small samples.
> Bootstrap bias correction (Efron and Tibshirani, 1994; Horowitz, 2001):
B
—— L —H 1
(bias ", bias ) = = > (3",4™) = (3-,5"),
—L

’AYtLgc = ﬁL — bias , Ygc =4 — bias

» Bootstrap bias corrected confidence interval:

Clec = [Fkc — C1—a/VN A8 + Ei—a/V/]
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Simulations: results

» 300 simulations, 3,000 bootstrap draws, targeting 95% coverage.

Table: Simulations, P(Y1 — Yo < §)

Bias St. Dev. Emp. Coverage
G AL 4M c
100 0.047 -0.051 0.065 0.066 0.900
200 0.031 -0.031 0.049 0.049 0.917
300 0.030 -0.021 0.040 0.040 0.893

Table: Simulations, P(Y1 — Yy < §), w/Bias Correction

Bias St. Dev. Emp. Coverage
n oL ~H oL ~H al
7BC 7BC 7BC VBc BC
100 0.021  -0.026 0.071 0.071 0.927
200 0.013 -0.015 0.052 0.051 0.953
300 0.015 -0.007 0.042 0.042 0.957
Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024
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A randomized job training experiment

» The National Supported Work Demonstration Program (NSW)

¢ Disadvantaged workers randomized to treatment (guaranteed job, meeting
w/counselor) or control.

® Diamond and Sekhon (2013) subsample: men, 297 treated and 425 control

® Qutcome Y is 1978 real earnings, one year after treatment ended.

Table: Balance table

H base inc. age yrs. educ. HS dropout  black  hispanic  married
control 3672.49 24.45 10.19 0.81 0.80 0.11 0.16
(6521.53)  (6.59) (1.62) (0.39) (0.40) (0.32) (0.36)
3571.00 24.63 10.38 0.73 0.80 0.09 0.17
treated
(5773.13)  (6.69) (1.82) (0.44) (0.40) (0.29) (0.37)

Note: Standard deviations in parentheses.
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Who saw larger benefits from treatment?

» Question: Who saw larger benefits from the NSW treatment?

» Parameter: The OLS slope coefficient Y1 — Yo =a+7Yy +¢

0

——
_ COV(Yl — Yo, Yo) _ E[(Yl — YQ)YO] —(E[Yl] — E[Yo])E[Yo]
Var(Yp) E[Y§] — (E[Yo])?

» Interpretation: v < 0 implies workers with below average Y tend to see
above average Y1 — Yy
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NSW results

» Discretized age and baseline income are informative covariates.

® age bins: [16,23], (23, c0)
® baseline income bins: [0, 0], (0,4000], (4000, co)

Table: Estimates of bounds for 7, the OLS Slope

H Lower Bound Upper Bound 95% Cl

No Covariates -1.78 0.19 [-2.01, 0.42]
Disc. Age and Inc. -1.72 0.00 [-1.95, 0.22]
With Bias Corr. -1.73 0.04 [-1.96, 0.27]
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NSW results: conditional on covariate values

Table: Estimates conditional on covariate values

age base inc. H At AEC 95% Clpc n
0 197 028  [226,056 140

(16, 23] (0, 4000] 174 -0.15 [-1.9, 0.01] 141
(4000, o0) || -1.45 -044  [1.63,-027] 90

0 -2.13 081 [-2.65, 1.33] 187

(23, ) (0, 4000] 1390 016  [1.93, 0.3§] 56
(4000, o0) || -1.66 003  [-2.08,045 108

» Among young men with + base income, low Yj is associated with high Y; — Yo.

» This subset’s vulnerable individuals see larger benefits from treatment.
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Conclusion

> Summary:

® Parameters of the joint distribution of potential outcomes are not point
identified.

® Sharp bounds are characterized with optimal transport.

® Sample analogue estimators are computationally and analytically attractive.
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Appendix: full setting

Assumption 1 (Setting). {Y}, D;, Z;, X;}7_, is an i.i.d. sample, with
YEYCR,  De{01},  Ze{01},  XeX={a,...om}

generated from a distribution satisfying
(i) Potential outcomes: Y = DY; + (1 — D) Yp,

(ii) Potential treatment statuses: D = ZD; + (1 — Z) Do, with D, € {0,1},
(i) Instrument exogeneity: (Y1, Yo, D1, Do) L Z | X,
(iv) Monotonicity: D; > Dy almost surely,
(v) Existence of compliers: P(D; > Do, X = x) > 0 for each x, and
(vi) P(X =x,Z=z)> 0 for each (x, z)
» Terminology: always-taker, complier, defier, never-taker.
| D=1 Do =0
D; =1 | Always-takers Compliers
D, = Defiers Never-takers

» Monotonicity rules out defiers. Focus on distribution of compliers.
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Appendix: identification of P(Y; — Yy < 0)

» OT.(Pi, Po) is well behaved (attained, strong duality holds, etc) when c(y1, yo) is
bounded and lower semicontinuous

> If c(y1,%0) = L{y1 — yo < 0}, let

cu(y1,y0) = L{n — yo < 8}, ci(y1,y0) = L{y = yo > 0}
Hi = OTCL(P1|X7 PO\X)» 05 =1- OTCH(PllX’ P0|X)

» The form of the bounds remains the same:

0" = E[0%], 0" = E[6¥]
L . H
= min t,mn), = max t,
7= min, &(tn) 7= max, g(tn)

» |dentified sets are still sharp when CDFs are continuous:
Fax(y) = P(Ya <y | X = x)
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Appendix: aside, CDF results are conservative when
continuity fails

OTc(Pla PO) = weﬂi(r}’f; Po) Eﬂ'[c( Yl? YO)]

> Bounds on 8 = P(Y1 — Yy < §) are found with

ey, 0) = H{y1 — yo < 4}, cH(y1, y0) = I{y1 — yo > 6},
0t = 0T, (Py, Po), 0" =1 - 0T, (P1, Po)

Using OT results, show that if marginal CDFs Fy are continuous then ©;p = [GL,OH].
> As a byproduct, recover the famed Makarov bounds studied by Fan and Park (2010)

oL = SLy:p{Fl(y) — Fo(y —9)}, o =1+ inf {F1(y) = Fo(y — 9)}

» Furthermore, 1{y; — yo < 6} < 1{y1 — yo < &} implies the bounds are conservative:
©p C [0, 6M] whether or not F, are continuous.

e
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Appendix: full assumption 3

» Parameter of interest:
v=g(0n) eR
where 6 = E[c(Y1, Yo)] € R and 1 = (E[m(Y1)], E[no(Y0)]) € RF:+.

Assumption 3 (Function of moments)
(i) Elllna(Y)II’] < oo for d = 1,0,
(i) g(-,m) is continuous, and

(iii) the functions

Lol L H . He L L H
t,t',e)= min t,e), t,t',e) = max t,e
g ( ) te[tL’tH]g( ) g'( ) te[tL’tH]g( )

are continuously differentiable at (t', t", e) = (6%,6", 7).

Remark: A3 (ii), (iii) implied by g continuously differentiable and g(-,7) monotonic

Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024 6/14



Appendix: quantiles

> Suppose the parameter of interest is g~ solving

P(Yi—Yo<qr)=7

» View CDF bounds as a function: 6(§) = P(Y1 — Yy < 9)

c,s(y1,¥0) = 1{y1 — yo < 3}, cH,s(y1, %) = L{y1 — yo > 6},
0)12(5) = OTCL(Pllxv PO\X): 05(5) =1- OTCH(Pl\xr P0|x)
01(8) = E[0%(5)] 0"(8) = E[63(6)]

and let Q; » be the sharp identified set for g-.

Lemma (Identification of g-). Suppose assumptions 1 and 2(ii) hold. Then g € Q; ; if and
only if §*(g) < 7 < 6"(q).
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Appendix: aside, IV

» Identification extends easily to IV.
» Consider the binary IV potential outcomes framework of Abadie (2003): Z € {0, 1},
D = ZD, + (1 — Z)Dy, (Y1, Yo,D1,D0) L Z | X, Dy > Dy
units with Dy > Dy are known as compliers.
» This model identifies marginal distributions of potential outcomes of compliers:

Yd|D1>D0,X=X

» Same identification applies to parameters conditional on compliance. E.g.,

P(Y1 > Yo | D1 > Do)
aa D
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Appendix: definition of T

» Proof defines a set of universally bounded functions
FC{f:Yx{0,1} x ¥ - R}
» View P, P as bounded functions on F:
() = {e: 7 R el = swle(n)] < o0}
feF

» The map T : (°°(F) — R? is described by P — (Pyjx, Pojx, ) and

0 = OT(Py, Poj). 6 = —OT_c(Pujx, Popx)
ot = E[0%], " = Elx]
L 1 i
- t - '
T ol BT T s

Weak convergence theorem
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Appendix: proof sketch (1/3)

1. Will view P, P as maps in £°°(F) for Donsker set F (defined later), and
T 02(F) = R

2. To show T(-) is (Hadamard) directionally differentiable, suffices to show OT. is
directionally differentiable.

3. By strong duality,

OTC(PI\Xv PO\X) = ( Su2¢ EP1|X [SO(Yl)] + EP0|X[¢(YO)]

e, c

O = {(p,¥) : o(y1) + ¥(y0) < c(y1,¥0)}
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Appendix: proof sketch (2/3)

OTc(Pujx; Poix) =, Ep,, [p(Y1)] + Epy , [¥(Y0)]
e = {(v,¥) : p(y1) + ¥(¥0) < c(y1, %)}

4. ®. is a large set, but much of it can be ignored:

® Ifp(y1) < @(y1), then Ep, [p(Y1)] < Epy, [B(Y1)]
® Any pair (¢,%) where o(y1) + ¥(¥0) < c(y1, ) is “slack” can be ignored

5. This observation leads to
sup  Ep [o(Y1)] + Epy[¥(Y0)] = sup Ep, [p(Y1)] + Epy [4(Y0)] (1)
(p,9)edc (¢, 0)EPN(Fc X FE)

(i) if ¢(y1,y0) is L-Lip. and Y is compact, Fc and F¢ are L-Lip. and universally
bounded.

(it) if e(y1,¥0) = 1{y1 — yo < 0}, Fc is the set of intervals, F¢ the complements of
intervals.

6. Finally, ®c N (Fc x F¢) is compact and Ep, [¢(Y1)] + Ep, [1/(Y0)] is continuous
= OT, and therefore T(:), are Hadamard directionally differentiable.

Weak convergence theorem c-concavity
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Appendix: proof sketch (3/3)

7. Define F to be union of Fc and F¢ (and nuisance moments, all X indicators).
8. Fis Donsker =5 /n(P, — P) 5 G in (>°(F).

9. Functional delta method implies the result,

V(3 A" = (4 4M) = Va(T(Pa) — T(P)) 5 TH(G).

Weak convergence theorem
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Appendix: c-concavity

OTc(Pr, Po) = sup  Ep[p(Y1)] + Er[92(Y0)],
(Wv¢)€¢c J((p 1/))

» Define the c-transforms:
“(y0) = iplf{c()/h)’o) — )}, Pe(n) = i;‘of{c(}/h)fo) —¥(y0)}

call ¢¢ (and ) c-concave functions.

> For any (p,%) € ®c = {(¢,%) i v(y1) +¥(x) < c(y1, )}

(i) (p,9), € e
(ii) If (¢,9) € D¢, then P(y0) < ¢°(y0) for all yp, so
(iii) J(p, ) < J(, <) by monotonicity of Ep,[].
— The dual problem can be restricted to c-concave functions.

» c-concave functions often inherit properties of c:

® Lipschitz continuity, boundedness, etc.
® These properties are used to define F¢ and F¢

Proof sketch Weak convergence theorem
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Appendix: formal assumption 4

> Let P be the distribution of an observation: (Y, D, Z, X) ~ P.
> Let Yy x be the support of Y | D =d, X =x, and 1y, (v) = 1{y € Vax}
» Define ¢, cy:

(i) If assumption 2 (i) holds, let ¢, = c(y1, yo) and cx(y1, yo) = —c(y1, Yo)-
(ii) If assumption 2 (ii) holds, let c;(y1,y0) = 1{y1 — yo < 6} and cx(y1,y0) = L{y1 — yo > 6}.

Assumption 4 (Unique solutions) For each x € X, each ¢ € {c, cy}, and any

(o1, 1), (p2,92) € arg max Epy [e(Y1)] + Epy, [1(Y0)],
(e, ) EDPN(Fe X FE)

there exists s € R such that

]lyl’x X p1 = lyl,x X (992 + S)7 P—a.s., ]lyO)X X P = ﬂyoyx X (’lﬁz — S)7 P —as.
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