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Introduction

The fundamental problem of causal inference

It is impossible to observe the [treated outcome] and [untreated outcome] on
the same unit and, therefore, it is impossible to observe the effect...

(Holland, 1986)

I Parameters of the joint distribution of potential outcomes are not point
identified.

I This paper
• shows optimal transport characterizes sharp bounds,
• accomodates noncompliance through a standard IV model, and
• provides simple, computationally convenient estimators.
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The fundamental problem of causal inference

I Never observe (Y1,Y0), because each unit is treated (D = 1) or untreated (D = 0):

Observed outcome Y = DY1 + (1− D)Y0

I The marginal distributions P1 and P0 are identified - but have less information.

I For example, what share of units benefit from treatment?

Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024 2 / 33



Example 1: the share benefiting from treatment

I Many joint distributions π share marginal distributions P1, P0:

Π(P1,P0) = {π : π1 = P1, π0 = P0}

I Optimizing P(Y1 > Y0) over Π(P1,P0) implies bounds:

min
π∈Π(P1,P0)

Pπ(Y1 > Y0) max
π∈Π(P1,P0)

Pπ(Y1 > Y0)
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Example 2: who sees larger benefits from treatment?

I Do those with smaller Y0 see larger Y1 − Y0?

OLS slope =
Cov(Y1 − Y0,Y0)

Var(Y0)
=

E [(Y1 − Y0)Y0]− (E [Y1]− E [Y0])E [Y0]

E [Y 2
0 ]− (E [Y0])2

I Optimizing E [(Y1 − Y0)Y0] over Π(P1,P0) implies bounds on OLS slope:

min
π∈Π(P1,P0)

Eπ[(Y1 − Y0)Y0] max
π∈Π(P1,P0)

Eπ[(Y1 − Y0)Y0]
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This paper

I Parameter of interest:
γ = g(θ, η) ∈ R,

where θ = E [c(Y1,Y0)] ∈ R and η = (E [η1(Y1)],E [η0(Y0)]) ∈ RK1+K0 .

• Example 3: γ = Var(Y1 − Y0) = E [(Y1 − Y0)2]− (E [Y1]− E [Y0])2

I Characterize sharp identified set with optimal transport:

OTc(P1,P0) = min
π∈Π(P1,P0)

Eπ[c(Y1,Y0)]

I Propose and study sample analogue estimators of the bounds.

I Empirical application: who sees larger benefits from the NSW job training?
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Related literature

I Joint distribution of potential outcomes
• CDF or quantiles of Y1 − Y0: Manski (1997), Heckman et al. (1997), Firpo (2007),

Fan and Park (2010), Fan and Park (2012), Firpo and Ridder (2019),
Callaway (2021), Frandsen and Lefgren (2021).

• General methods: Russell (2021) Fan et al. (2023), Ji et al. (2023), this paper.

I Optimal transport in econometrics
• Partial identification: Galichon and Henry (2011), Ekeland et al. (2010)
• Causal inference: Dunipace (2021), Gunsilius and Xu (2021), Torous et al. (2021)
• Joint distribution of (Y1,Y0): Ji et al. (2023), this paper.

⇒ This paper contributes identification and estimators that

i. cover a large class of parameters while remaining tractable,
ii. allow for simple bootstrap inference, and
iii. accomodate noncompliance through a standard IV model.

Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024 6 / 33



Overview

1 Setting and parameter class

2 Identification

3 Estimators

4 Simulations

5 Application

Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024 6 / 33



Overview

1 Setting and parameter class

2 Identification

3 Estimators

4 Simulations

5 Application

Daniel Ober-Reynolds (UCLA) Potential Outcomes, Optimal Transport February, 2024 6 / 33



Setting

I For this talk, focus on unconfoundedness.

Assumption 1 (Setting, simplified) {Yi ,Di ,Xi}ni=1 is an i.i.d. sample with

Y ∈ Y ⊆ R, D ∈ {0, 1}, X ∈ X = {x1, . . . , xM}

generated from a distribution satisfying

(i) Potential outcomes: Y = DY1 + (1− D)Y0

(ii) Unconfoundedness: (Y1,Y0) ⊥ D | X
(iii) P(D = d ,X = x) > 0 for each (d , x)

I In the paper, binary IV satisfying monotonicity condition (Imbens and
Angrist, 1994).

Setting w/IV
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Parameter class

I Parameter of interest:
γ = g(θ, η) ∈ R

where θ = E [c(Y1,Y0)] ∈ R and η = (E [η1(Y1)],E [η0(Y0)]) ∈ RK1+K0

Assumption 2 (Cost function) Either

(i) c(y1, y0) is Lipschitz continuous and Y is compact, or

(ii) c(y1, y0) = 1{y1 − y0 ≤ δ} and the CDFs Fd|x(y) = P(Yd ≤ y | X = x) are
continuous.

Remark: If c(y1, y0) = 1{y1 − y0 ≤ δ} but Fd|x(·) are not continuous, inference
remains valid for an outer identified set.
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Parameter class

I Parameter of interest:
γ = g(θ, η) ∈ R

where θ = E [c(Y1,Y0)] ∈ R and η = (E [η1(Y1)],E [η0(Y0)]) ∈ RK1+K0 .

Assumption 3 (Function of moments, simplified)

(i) η1(Y ) and η0(Y ) have finite second moments,

(ii) g(·, ·) is continuously differentiable, and

(iii) g(·, η) is monotonic.

Remark: Assumption 3 (iii) is relaxed in the paper.

Full assumption 3
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Parameter class: motivating examples

I Share benefiting: P(Y1 > Y0)
• Allcott et al. (2020): deactivating Facebook affects subjective well-being.

I Share benefiting above cost: P(Y1 − Y0 > cost)
• Friebel et al. (2023): employee referral programs increase grocery store profit.

I Who benefits more from treatment? Cov(Y1 − Y0,Y0)/Var(Y0)
• Application: NSW job experience increases post-training annual income.

I Expected percent change: E
[
Y1−Y0

Y0

]
• This parameter is often approximated with E [log(Y1)− log(Y0)].

I Quantiles of Y1 − Y0

• Median is more representative than mean when distribution is skewed.
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Optimal transport

OTc(P1,P0) = min
π∈Π(P1,P0)

Eπ[c(Y1,Y0)]

I Choose a joint distribution with given marginals to minimize costs.

• Feasible set: Π(P1,P0) = {π : π1 = P1, π0 = P0}

• Cost function: c(y1, y0)

I Often interpreted in other contexts, but here intended literally.

I Attained under mild conditions.
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Identification without covariates

I {Yi ,Di}ni=1 identifies marginal distributions P1 and P0.

I Identified set for P1,0 is set of joint distributions with marginals P1, P0:

Π(P1,P0) = {π : π1 = P1, π0 = P0}

I Bounds on θ = EP1,0 [c(Y1,Y0)] for continuous c :

θL = min
π∈Π(P1,P0)

Eπ[c(Y1,Y0)], θH = max
π∈Π(P1,P0)

Eπ[c(Y1,Y0)]

θL = OTc(P1,P0), θH = −OT−c(P1,P0)

I Bounds on γ = g(θ, η):

γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

CDF?
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Identification with covariates
I {Yi ,Di ,Xi}ni=1 identifies marginal conditional distributions P1|x and P0|x .

Yd | X = x ∼ Pd|x

I Identified set for P1,0|x is set of joint distributions with marginals P1|x , P0|x :

Π(P1|x ,P0|x) =
{
π1,0|x : π1|x = P1|x , π0|x = P0|x

}
I Bounds on θ = EP1,0 [c(Y1,Y0)] = E [

:=θX︷ ︸︸ ︷
EP1,0|X [c(Y1,Y0) | X ]] for continuous c :

θLx = OTc(P1|x ,P0|x), θHx = −OT−c(P1|x ,P0|x)

θL = E [θLX ], θH = E [θHX ]

I Bounds on γ = g(θ, η):

γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

CDF?
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Covariates tighten identified bounds
I Covariates tighten bounds,

OTc(P1,P0) ≤ θL, θH ≤ −OT−c(P1,P0).

• Why? The optimization has additional constraints.

• θL = E [OTc(P1|X ,P0|X )] looks for π ∈ Π(P1,P0) also matching (P1|x ,P0|x).

I Bounds on P(Y1 > Y0): not sharp [0.25, 1], sharp: [0.44, 0.68].
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Theorem: identification

I For continuous c ,

Bounds on θx : θLx = OTc(P1|x ,P0|x), θHx = −OT−c(P1|x ,P0|x)

Bounds on θ : θL = E [θLX ] θH = E [θHX ]

Bounds on γ : γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

Theorem (identification)

Suppose assumptions 1, 2, and 3 are satisfied. Then the sharp identified set for
γ = g(θ, η) is [γL, γH ].

CDF? IV Aside Quantile details
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Optimal transport

OTc(P1,P0) = min
π∈Π(P1,P0)

Eπ[c(Y1,Y0)]︸ ︷︷ ︸
Primal Problem

=x
Strong
Duality

max
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]︸ ︷︷ ︸
Dual Problem

Π(P1,P0) = {π : π1 = P1, π0 = P0} Φc = {(ϕ,ψ) : ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

I The primal problem is used in identification.

I The dual problem is used for estimation.

I Strong duality holds under the cost function assumptions. Each problem is
attained, too.
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Estimators: recall identification

I Distributions of Yd | X = x ∼ Pd|x :

EPd|x [f (Yd)] =
E [f (Y )1{D = d ,X = x}]

P(D = d ,X = x)

I Using strong duality,

OTc(P1|x ,P0|x) = max
(ϕ,ψ)∈Φc

EP1|x [ϕ(Y1)] + EP0|x [ψ(Y0)].

I The identified set for γ is [γL, γH ], where for c continuous,

θLx = OTc(P1|x ,P0|x), θHx = −OT−c(P1|x ,P0|x)

θL = E [θLX ], θH = E [θHX ]

γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

CDF?
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Estimators: sample analogues

I Estimate Pd|x with sample analogues P̂d|x :

EP̂d|x
[f (Yd)] =

1
n

∑n
i=1 f (Yi )1{Di = d ,Xi = x}]

1
n

∑n
i=1 1{Di = d ,Xi = x}

I Using strong duality,

OTc(P̂1|x , P̂0|x) = max
(ϕ,ψ)∈Φc

EP̂1|x
[ϕ(Y1)] + EP̂0|x

[ψ(Y0)].

I Estimate the endpoints of [γL, γH ] with plug-in estimators. For c continuous,

θ̂Lx = OTc(P̂1|x , P̂0|x), θ̂Hx = −OT−c(P̂1|x , P̂0|x)

θ̂L =
1

n

n∑
i=1

θ̂LXi
, θ̂H =

1

n

n∑
i=1

θ̂HXi

γ̂L = min
t∈[θ̂L,θ̂H ]

g(t, η̂), γ̂H = max
t∈[θ̂L,θ̂H ]

g(t, η̂)

CDF?
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Estimators: computing OTc(P̂1|x , P̂0|x)

OTc(P̂1|x , P̂0|x) = max
(ϕ,ψ)∈Φc

EP̂1|x
[ϕ(Y1)] + EP̂0|x

[ψ(Y0)].

I To evaluate EP̂d|x
[f (Yd)] for any function f , only the values fi = f (Yi ) matter.

EP̂d|x
[f (Yd)] =

n∑
i=1

ωd,x,i × fi , ωd,x,i =
1{Di = d ,Xi = x}/n

1
n

∑n
j=1 1{Dj = d ,Xj = x}

.

I Computating OTc(P̂1|x , P̂0|x) is straightforward linear programming:

OTc(P̂1|x , P̂0|x) = max
{ϕi ,ψi}ni=1

n∑
i=1

ω1,x,i × ϕi +
n∑

i=1

ω0,x,i × ψi

s.t. ϕi + ψj ≤ c(Yi ,Yj) for all 1 ≤ i , j ≤ n,

I Dimension is reduced by ignoring ϕi , ψi , and constraints where ωd,x,i = 0.
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Convergence in distribution: theorem

I Let P be the distribution of an observation, and Pn the empirical distribution.

(γ̂L, γ̂H) = T (Pn), (γL, γH) = T (P)

Theorem (Weak convergence)

Suppose assumptions 1, 2, and 3 hold. Then

√
n((γ̂L, γ̂H)− (γL, γH))

L→ T ′P(G)

where
√
n(Pn − P)

L→ G and T ′P(·) is the Hadamard directional derivative of T (·) at P.

T (·) details Proof sketch
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Inference: bootstrap

I Estimating the asymptotic distribution is necessary for inference.

I The bootstrap provides an attractive procedure.

• Bootstrap draw: {Y ∗i ,D
∗
i ,X

∗
i }

n
i=1

• Bootstrap empirical distribution: P∗n

I Compute T (P∗n) the same way as T (Pn): let ω∗d,x,i =
1{D∗i =d,X∗i =x}/n

1
n

∑n
j=1 1{D

∗
j =d,X∗j =x} ,

OTc(P̂∗1|x , P̂
∗
0|x) = max

{ϕi ,ψi}ni=1

n∑
i=1

ω∗1,x,iϕi +
n∑

i=1

ω∗0,x,iψi

s.t. ϕi + ψj ≤ c(Yi ,Yj) for all 1 ≤ i , j ≤ n
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Inference: bootstrap

Assumption 4 (Unique solutions, informal) For each instance of optimal transport
in T (P), the solution to the dual problem is suitably unique.

Theorem (Bootstrap consistency)

Suppose assumptions 1, 2, 3, and 4 hold. Then T ′P(G) is bivariate normal, and
conditional on {Yi ,Di ,Xi}ni=1,

√
n(T (P∗n)− T (Pn))

L→ T ′P(G)

in outer probability.

Precise assumption 4
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Inference: bootstrap

I Bootstrap works with assumption 4 (unique solutions)...when does that happen?

Lemma (Unique solutions) Suppose that

(i) c(y1, y0) is continuously differentiable, and

(ii) for each x , Supp(Yd | X = x) = [y `d,x , y
u
d,x ] is bounded.

then assumption 4 holds.

I Assumption 4 may hold without this lemma’s conditions.
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Inference: bootstrap alternative

I Only require assumptions 1, 2, and 3 to claim

√
n((γ̂L, γ̂H)− (γL, γH))

L→ T ′P(G).

I But without assumption 4, T ′P(G) may not be bivariate Normal,

=⇒ The bootstrap is not consistent.

I The paper shows a consistent alternative.

• Follows Fang and Santos (2019): estimating the derivative T ′P(·).

• Implementation is more involved, but still computationally tractable.
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Simulations: parameter and DGP

I Parameter γ = θ = P(Y1 − Y0 ≤ δ) has simple bounds:

γL = sup
y
{F1(y)− F0(y − δ)} , γH = 1 + inf

y
{F1(y)− F0(y − δ)}

I For simplicity: no X , P(D = 1) = 1/2, distributions of Y1, Y0:

I Unique solutions =⇒ bootstrap is valid.
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Simulations: confidence set

I Asymptotic 1− α confidence set for [γL, γH ]:

(i) Using {Yi ,Di ,Xi}ni=1, compute estimators:

(γ̂L, γ̂H) = T (Pn)

(ii) For each b = 1, . . . ,B, draw {Y ∗i,b,D
∗
i,b,X

∗
i,b}

n
i=1 to define P∗n,b and compute:

(γ̂L∗b , γ̂H∗b ) = T (P∗n,b)

(iii) Let ĉ1−α be the 1− α quantile of {max{
√
n(γ̂L∗b − γ̂),−

√
n(γ̂H∗b − γ̂H)}}Bb=1, and

CI = [γ̂L − ĉ1−α/
√
n, γ̂H + ĉ1−α/

√
n]
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Simulations: finite sample bias and correction

I CI has exact asymptotic coverage. What about small samples?

• max over sample averages is biased upward (Haile and Tamer, 2003).

• Leads to [γ̂L, γ̂H ] that tend to be “too narrow” in small samples.

I Bootstrap bias correction (Efron and Tibshirani, 1994; Horowitz, 2001):

(b̂ias
L
, b̂ias

H
) =

1

B

B∑
b=1

(γ̂L∗, γ̂H∗)− (γ̂L, γ̂H),

γ̂LBC = γ̂L − b̂ias
L
, γ̂HBC = γ̂H − b̂ias

H

I Bootstrap bias corrected confidence interval:

CIBC = [γ̂LBC − ĉ1−α/
√
n, γ̂HBC + ĉ1−α/

√
n]
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Simulations: results

I 300 simulations, 3,000 bootstrap draws, targeting 95% coverage.

Table: Simulations, P(Y1 − Y0 ≤ δ)

n
Bias St. Dev. Emp. Coverage

γ̂L γ̂H γ̂L γ̂H CI

100 0.047 -0.051 0.065 0.066 0.900

200 0.031 -0.031 0.049 0.049 0.917

300 0.030 -0.021 0.040 0.040 0.893

Table: Simulations, P(Y1 − Y0 ≤ δ), w/Bias Correction

n
Bias St. Dev. Emp. Coverage

γ̂LBC γ̂HBC γ̂LBC γ̂HBC CIBC

100 0.021 -0.026 0.071 0.071 0.927

200 0.013 -0.015 0.052 0.051 0.953

300 0.015 -0.007 0.042 0.042 0.957
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A randomized job training experiment

I The National Supported Work Demonstration Program (NSW)

• Disadvantaged workers randomized to treatment (guaranteed job, meeting
w/counselor) or control.

• Diamond and Sekhon (2013) subsample: men, 297 treated and 425 control

• Outcome Y is 1978 real earnings, one year after treatment ended.

Table: Balance table

base inc. age yrs. educ. HS dropout black hispanic married

control
3672.49 24.45 10.19 0.81 0.80 0.11 0.16

(6521.53) (6.59) (1.62) (0.39) (0.40) (0.32) (0.36)

treated
3571.00 24.63 10.38 0.73 0.80 0.09 0.17

(5773.13) (6.69) (1.82) (0.44) (0.40) (0.29) (0.37)

Note: Standard deviations in parentheses.
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Who saw larger benefits from treatment?

I Question: Who saw larger benefits from the NSW treatment?

I Parameter: The OLS slope coefficient Y1 − Y0 = α + γY0 + ε

γ =
Cov(Y1 − Y0,Y0)

Var(Y0)
=

θ︷ ︸︸ ︷
E [(Y1 − Y0)Y0]−(E [Y1]− E [Y0])E [Y0]

E [Y 2
0 ]− (E [Y0])2

I Interpretation: γ < 0 implies workers with below average Y0 tend to see
above average Y1 − Y0
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NSW results

I Discretized age and baseline income are informative covariates.

• age bins: [16, 23], (23,∞)

• baseline income bins: [0, 0], (0, 4000], (4000,∞)

Table: Estimates of bounds for γ, the OLS Slope

Lower Bound Upper Bound 95% CI

No Covariates -1.78 0.19 [-2.01, 0.42]

Disc. Age and Inc. -1.72 0.00 [-1.95, 0.22]

With Bias Corr. -1.73 0.04 [-1.96, 0.27]
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NSW results: conditional on covariate values

Table: Estimates conditional on covariate values

age base inc. γ̂LBC γ̂HBC 95% CIBC n

(16, 23]

0 -1.97 0.28 [-2.26, 0.56] 140

(0, 4000] -1.74 -0.15 [-1.9, 0.01] 141

(4000, ∞) -1.45 -0.44 [-1.63, -0.27] 90

(23, ∞)

0 -2.13 0.81 [-2.65, 1.33] 187

(0, 4000] -1.39 -0.16 [-1.93, 0.38] 56

(4000, ∞) -1.66 0.03 [-2.08, 0.45] 108

I Among young men with + base income, low Y0 is associated with high Y1 − Y0.

I This subset’s vulnerable individuals see larger benefits from treatment.
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Conclusion

I Summary:

• Parameters of the joint distribution of potential outcomes are not point
identified.

• Sharp bounds are characterized with optimal transport.

• Sample analogue estimators are computationally and analytically attractive.
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Appendix: full setting

Assumption 1 (Setting). {Yi ,Di ,Zi ,Xi}ni=1 is an i.i.d. sample, with

Y ∈ Y ⊆ R, D ∈ {0, 1}, Z ∈ {0, 1}, X ∈ X = {x1, . . . , xM}

generated from a distribution satisfying

(i) Potential outcomes: Y = DY1 + (1− D)Y0,

(ii) Potential treatment statuses: D = ZD1 + (1− Z)D0, with Dz ∈ {0, 1},
(iii) Instrument exogeneity: (Y1,Y0,D1,D0) ⊥ Z | X ,

(iv) Monotonicity: D1 ≥ D0 almost surely,

(v) Existence of compliers: P(D1 > D0,X = x) > 0 for each x , and

(vi) P(X = x ,Z = z) > 0 for each (x , z)

I Terminology: always-taker, complier, defier, never-taker.

D0 = 1 D0 = 0

D1 = 1 Always-takers Compliers
D1 = 0 ���Defiers Never-takers

I Monotonicity rules out defiers. Focus on distribution of compliers.

Setting Aside, IV
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Appendix: identification of P(Y1 − Y0 ≤ δ)
I OTc(P1,P0) is well behaved (attained, strong duality holds, etc) when c(y1, y0) is

bounded and lower semicontinuous

I If c(y1, y0) = 1{y1 − y0 ≤ δ}, let

cL(y1, y0) = 1{y1 − y0 < δ}, cH(y1, y0) = 1{y1 − y0 > δ}

θLx = OTcL(P1|x ,P0|x), θHx = 1− OTcH (P1|x ,P0|x)

I The form of the bounds remains the same:

θL = E [θLX ], θH = E [θHX ]

γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

I Identified sets are still sharp when CDFs are continuous:

Fd|x(y) = P(Yd ≤ y | X = x)

Identification Identification Thm Estimators
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Appendix: aside, CDF results are conservative when
continuity fails

OTc(P1,P0) = inf
π∈Π(P1,P0)

Eπ[c(Y1,Y0)]

I Bounds on θ = P(Y1 − Y0 ≤ δ) are found with

cL(y1, y0) = 1{y1 − y0 < δ}, cH(y1, y0) = 1{y1 − y0 > δ},

θL = OTcL (P1,P0), θH = 1− OTcH (P1,P0)

Using OT results, show that if marginal CDFs Fd are continuous then ΘID = [θL, θH ].

I As a byproduct, recover the famed Makarov bounds studied by Fan and Park (2010)

θL = sup
y
{F1(y)− F0(y − δ)} , θH = 1 + inf

y
{F1(y)− F0(y − δ)}

I Furthermore, 1{y1 − y0 < δ} ≤ 1{y1 − y0 ≤ δ} implies the bounds are conservative:
ΘID ⊆ [θL, θH ] whether or not Fd are continuous.

Identification Identification Thm Estimators
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Appendix: full assumption 3

I Parameter of interest:
γ = g(θ, η) ∈ R

where θ = E [c(Y1,Y0)] ∈ R and η = (E [η1(Y1)],E [η0(Y0)]) ∈ RK1+K0 .

Assumption 3 (Function of moments)

(i) E [‖ηd(Y )‖2] <∞ for d = 1, 0,

(ii) g(·, η) is continuous, and

(iii) the functions

gL(tL, tH , e) = min
t∈[tL,tH ]

g(t, e), gH(tL, tH , e) = max
t∈[tL,tH ]

g(t, e)

are continuously differentiable at (tL, tH , e) = (θL, θH , η).

Remark: A3 (ii), (iii) implied by g continuously differentiable and g(·, η) monotonic

Back
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Appendix: quantiles

I Suppose the parameter of interest is qτ solving

P(Y1 − Y0 ≤ qτ ) = τ

I View CDF bounds as a function: θ(δ) = P(Y1 − Y0 ≤ δ)

cL,δ(y1, y0) = 1{y1 − y0 < δ}, cH,δ(y1, y0) = 1{y1 − y0 > δ},

θLx (δ) = OTcL (P1|x ,P0|x ), θHx (δ) = 1− OTcH (P1|x ,P0|x )

θL(δ) = E [θLX (δ)] θH(δ) = E [θHX (δ)]

and let QI ,τ be the sharp identified set for qτ .

Lemma (Identification of qτ ). Suppose assumptions 1 and 2(ii) hold. Then q ∈ QI ,τ if and

only if θL(q) ≤ τ ≤ θH(q).

Examples
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Appendix: aside, IV

I Identification extends easily to IV.

I Consider the binary IV potential outcomes framework of Abadie (2003): Z ∈ {0, 1},

D = ZD1 + (1− Z)D0, (Y1,Y0,D1,D0) ⊥ Z | X , D1 ≥ D0

units with D1 > D0 are known as compliers.

I This model identifies marginal distributions of potential outcomes of compliers:

Yd | D1 > D0,X = x

I Same identification applies to parameters conditional on compliance. E.g.,

P(Y1 > Y0 | D1 > D0)

Ident. Thm. IV Setting
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Appendix: definition of T

I Proof defines a set of universally bounded functions

F ⊆ {f : Y × {0, 1} × X → R}

I View Pn, P as bounded functions on F :

`∞(F) =

{
g : F → R ; ‖g‖∞ = sup

f∈F
|g(f )| <∞

}
I The map T : `∞(F)→ R2 is described by P 7→ (P1|x ,P0|x , η) and

θLx = OTc(P1|x ,P0|x), θHx = −OT−c(P1|x ,P0|x)

θL = E [θLX ], θH = E [θHX ]

γL = min
t∈[θL,θH ]

g(t, η), γH = max
t∈[θL,θH ]

g(t, η)

Weak convergence theorem
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Appendix: proof sketch (1/3)

1. Will view P, P as maps in `∞(F) for Donsker set F (defined later), and
T : `∞(F)→ R2.

2. To show T (·) is (Hadamard) directionally differentiable, suffices to show OTc is
directionally differentiable.

3. By strong duality,

OTc(P1|x ,P0|x) = sup
(ϕ,ψ)∈Φc

EP1|x [ϕ(Y1)] + EP0|x [ψ(Y0)]

Φc = {(ϕ,ψ) : ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

Weak convergence theorem
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Appendix: proof sketch (2/3)

OTc(P1|x ,P0|x) = sup
(ϕ,ψ)∈Φc

EP1|x [ϕ(Y1)] + EP0|x [ψ(Y0)]

Φc = {(ϕ,ψ) : ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

4. Φc is a large set, but much of it can be ignored:
• If ϕ(y1) ≤ ϕ̃(y1), then EP1|x [ϕ(Y1)] ≤ EP1|x [ϕ̃(Y1)]
• Any pair (ϕ,ψ) where ϕ(y1) + ψ(y0) ≤ c(y1, y0) is “slack” can be ignored

5. This observation leads to

sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] = sup
(ϕ,ψ)∈Φc∩(Fc×Fc

c )

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] (1)

(i) if c(y1, y0) is L-Lip. and Y is compact, Fc and Fc
c are L-Lip. and universally

bounded.
(ii) if c(y1, y0) = 1{y1 − y0 ≤ δ}, Fc is the set of intervals, Fc

c the complements of
intervals.

6. Finally, Φc ∩ (Fc ×F c
c ) is compact and EP1|x [ϕ(Y1)] + EP0|x [ψ(Y0)] is continuous

=⇒ OTc , and therefore T (·), are Hadamard directionally differentiable.

Weak convergence theorem c-concavity
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Appendix: proof sketch (3/3)

7. Define F to be union of Fc and F c
c (and nuisance moments, all × indicators).

8. F is Donsker =⇒
√
n(Pn − P)

L→ G in `∞(F).

9. Functional delta method implies the result,

√
n((γ̂L, γ̂H)− (γL, γH)) =

√
n(T (Pn)− T (P))

L→ T ′P(G).

Weak convergence theorem
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Appendix: c-concavity

OTc(P1,P0) = sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)],︸ ︷︷ ︸
J(ϕ,ψ)

I Define the c-transforms:

ϕc (y0) = inf
y1
{c(y1, y0)− ϕ(y1)}, ψc (y1) = inf

y0
{c(y1, y0)− ψ(y0)}

call ϕc (and ψc ) c-concave functions.

I For any (ϕ,ψ) ∈ Φc = {(ϕ,ψ) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)},
(i) (ϕ,ϕc ),∈ Φc

(ii) If (ϕ,ψ) ∈ Φc , then ψ(y0) ≤ ϕc (y0) for all y0, so
(iii) J(ϕ,ψ) ≤ J(ϕ,ϕc ) by monotonicity of EPd

[·].
=⇒ The dual problem can be restricted to c-concave functions.

I c-concave functions often inherit properties of c:

• Lipschitz continuity, boundedness, etc.
• These properties are used to define Fc and Fc

c

Proof sketch Weak convergence theorem
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Appendix: formal assumption 4

I Let P be the distribution of an observation: (Y ,D,Z ,X ) ∼ P.

I Let Yd,x be the support of Y | D = d ,X = x , and 1Yd,x (y) = 1{y ∈ Yd,x}

I Define cL, cH :
(i) If assumption 2 (i) holds, let cL = c(y1, y0) and cH (y1, y0) = −c(y1, y0).

(ii) If assumption 2 (ii) holds, let cL(y1, y0) = 1{y1 − y0 < δ} and cH (y1, y0) = 1{y1 − y0 > δ}.

Assumption 4 (Unique solutions) For each x ∈ X , each c ∈ {cL, cH}, and any

(ϕ1, ψ1), (ϕ2, ψ2) ∈ arg max
(ϕ,ψ)∈Φc∩(Fc×Fc

c )
EP1|x [ϕ(Y1)] + EP0|x [ψ(Y0)],

there exists s ∈ R such that

1Y1,x
× ϕ1 = 1Y1,x

× (ϕ2 + s), P − a.s., 1Y0,x
× ψ1 = 1Y0,x

× (ψ2 − s), P − a.s.

Assumption 4 Why cL , cH ?
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