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Introduction

I Missing data is common, as are the selection concerns it raises

I Common solution: assume data are Missing (Completely) At Random
• Impute or ignore incomplete observations, use standard methods
• Convenient solution, often implausible justification

I This paper proposes an interpretable measure of selection, and estimates how
much selection is needed to overturn a conclusion
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Missing Data

I Bollinger et al. (2019) “Trouble in the Tails? What We Know about Earnings
Nonresponse 30 Years after Lillard, Smith, and Welch”

• CPS ASEC 2015 item and whole nonresponse rate: 43%

• By linking data with SSA tax records, show missing earnings data is not MAR

I Finkelstein et al. (2012), “The Oregon Health Insurance Experiment: Evidence From
the First Year”

• Survey data shows Medicaid improved self-reported physical/mental health

• Only 50% of survey recipients responded.

• When Lee (2009) sample selection bounds were applied, this conclusion could no longer
be supported.
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Related literature

I Missing data without MAR
• Point identification: Heckman (1979), Das et al. (2003)
• Partial identification: Manski (2005), Lee (2009)
• Robustness/sensitivity analysis: Kline and Santos (2013)

I Robustness/sensitivity analysis
• Missing data: Kline and Santos (2013)
• Potential outcomes: Masten and Poirier (2020)
• Omitted variable bias: Diegert et al. (2022)

⇒ This paper contributes a robustness exercise for missing data that

i. allows for any number of variables to be missing
ii. directly uses the researcher’s GMM model
iii. requires no additional data or modeling (no exclusion restriction)
iv. gives results that are succinct and interpretable
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Setting

I Data is i.i.d. sample {Di ,DiYi ,Xi}ni=1, where Di = 1{Yi is observed}.
• Variables of interest are (Y ,X ) ∈ Rdy × Rdx .
• Y may be a vector. If present, Xi is assumed finitely supported
• Example: Yi = (Y

(1)
i ,Y

(2)
i ) ∈ R2 collected through survey, Xi is administrative data

(age, occupation, etc.).

I Parameter β ∈ B ⊆ Rdb is identified through moment conditions

EP [g(Y ,X , b)] = 0 if and only if b = β

where P is the unconditional distribution of (Y ,X ).

• Example: OLS coefficients g(Y ,X , b) =

(
Y (2)

X

)
(Y (1) − (Y (2),Xᵀ)b)

I Conclusion to be investigated is that β is outside B0

H0 : β ∈ B0 vs H1 : β ∈ B \ B0

• Example: first OLS coefficient is positive. B0 = {b ∈ B ; b(1) ≤ 0}
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Setting

I Let pD = P(D = 1), X | D = 0 ∼ P0X , and

(Y ,X ) | D = 1 ∼ P1, (Y ,X ) | D = 0 ∼ P0,

P = pDP1 + (1− pD)P0

• The sample {Di ,DiYi ,Xi}ni=1, identifies pD , P1, and P0X ...
• ...but not P0, P, or β solving EP [g(Y ,X , β)] = 0

I Common solution: estimate β1 instead

EP1 [g(Y ,X , β1)] = 0

MCAR is the assumption P0 = P1. Implies P = P1 and β = β1.

I Suppose preliminary analysis suggests β1 ∈ B \ B0, but MCAR is doubtful. MAR?

• Hope to defend β ∈ B \ B0
• So P0 6= P1... but how different could they plausibly be?
• A quantitative measure of selection will allow meaningful discussion.
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Quantifying selection: predictive power of (Y ,X )

Sample is {Di ,DiYi ,Xi}ni=1, i.i.d.. pD = P(D = 1),

(Y ,X ) | D = 1 ∼ P1, (Y ,X ) | D = 0 ∼ P0,

P = pDP1 + (1− pD)P0

I Selection is a greater concern when context suggests (Y ,X ) would predict D well

• Example: survey asking about arrest record, vs. survey asking about TV preferences

I See this formally with densities. Let f1, f0 be densities of P1, P0 wrt P. Then

f1(y , x) =
pD(y , x)

pD
f0(y , x) =

1− pD(y , x)

1− pD

where pD(y , x) = P(D = 1 | Y = y ,X = x).

• Optimistic: D is independent of (Y ,X ).
=⇒ pD(y , x) = pD , so f1 = f0 (data is MCAR)

• Pessimistic: D is almost a function of (Y ,X ).
=⇒ pD(y , x) ≈ 1 or 0; f1 and f0 look quite different
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Quantifying selection with squared Hellinger

I Measure selection as the squared Hellinger distance between P0 and P1:

H2(P0,P1) =
1

2
EP

[
(
√

f0(Y ,X )−
√

f1(Y ,X ))2
]

where f0(y , x) and f1(y , x) are densities of P0 and P1 wrt P.

I f1(y , x) = pD(y , x)/pD and f0(y , x) = (1− pD(y , x))/pD implies

H2(P0,P1) = 1−
EP

[√
Var(D | Y ,X )

]
√

Var(D)

• Interpretation: expected percent standard deviation of D “explained” by (Y ,X )
• Captures intuition: more predictive power, higher selection
• Range is [0, 1]. Equals 0⇔ Var(D | Y ,X ) = Var(D), equals 1⇔ Var(D | Y ,X ) = 0

I Assumption: P0 is dominated by P1. Domination

• Rules out selection mechanisms that “truncate” data; e.g. Di = 1{Yi ≤ c}.

Other Selection Measures

Daniel Ober-Reynolds (UCLA) Missing Data, Breakdown Point 23 June 2023 8 / 19



Recap

I Setting:
• Model: EP [g(Y ,X , β)] = 0
• Hypothesis test: H0 : β ∈ B0 vs H1 : β ∈ B \ B0
• Data: {Di ,DiYi ,Xi}ni=1 i.i.d.. with Di = 1{Yi is observed}.
• Identified: pD , P1, P0X . Not identified: P = pDP1 + (1− pD)P0, or β
• Measure of selection: H2(P0,P1) = 1− EP [

√
Var(D | Y ,X )]/

√
Var(D)

I β1 solves EP1 [g(Y ,X , β1)] = 0; preliminary analysis suggests β1 ∈ B \ B0

I How much selection is needed to overturn the conclusion?
• Given pD , P1, and P0X how large must H2(P0,P1) be to rationalize β ∈ B0?
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Breakdown point

I Let Pb be the set of distributions Q dominated by P1 with marginal QX = P0X and

0 = pDEP1 [g(Y ,X , b)] + (1− pD)EQ [g(Y ,X , b)]

say Q rationalizes b.

I The breakdown point is the minimum selection needed to rationalize β ∈ B0:

δBP = inf
b∈B0

inf
Q∈Pb

H2(Q,P1)

I Large values of δBP assuage selection concerns

• The claim β ∈ B0 implies δBP ≤ 1
2 H

2(P0,P1) = 1− EP

[√
Var(D | Y ,X )

]
/
√

Var(D)

• If the claim (Y ,X ) predicts D this well is implausible, then β ∈ B0 is implausible.
• Context matters! Example: Survey about arrest record vs. survey about TV

I δBP is point identified

• Reporting estimates δ̂BPn can facilitate selection concern discussions
• Worries that δ̂BPn > δBP (due to sample noise) can be addressed with lower confidence intervals
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Breakdown point: uniform expectation

δBP = inf
b∈B0

inf
Q∈Pb

H2(Q,P1)︸ ︷︷ ︸
ν(b)

I Example: The sample is {Di ,DiYi}ni=1, and β = E [Y ] ∈ R.

Y | D = 1 ∼ U [0, 1], pD = P(D = 1) = 0.7

The claim to be supported is H1 : β > 0.4.

Simulations
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Estimation overview

I The breakdown point:

δBP = inf
b∈B0

inf
Q∈Pb

H2(Q,P1)︸ ︷︷ ︸
ν(b)

is estimated with a two-step procedure:

1. ν̂n(b) estimates ν(b) = infQ∈Pb H2(Q,P1)

2. Plug-in second step δ̂BPn = infb∈B0 ν(b)

I ν̂n(b) based on finite dimensional, well-behaved dual problem

I Second stage estimator analyzed using functional delta method

I Lower confidence intervals constructed using bootstrap procedure

Skip to Simulations
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Duality
I The primal problem is

ν(b) = inf
Q∈Pb

H2(Q,P1) (1)

I The dual problem is

V (b) = sup
λ∈Rdg +K

E

[
λᵀJ(D)h(DY ,X , b)

1− pD
− Df ∗(λᵀh(DY ,X , b))

pD

]
(2)

a finite dimensional convex optimization problem.
• f ∗, J and h are known functions,
• the expectation is wrt the distribution of (D,DY ,X ), and
• K is the cardinality of Supp(X ).

I Under regularity conditions, strong duality holds:

V (b) = ν(b)

• Assume this holds for all b ∈ B ⊆ B, with infb∈B0 ν(b) = infb∈B∩B0 ν(b)
• =⇒ we can focus on the dual problem.

Dual problem detail Strong duality assumptions
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Estimators

I With strong duality, the breakdown point is δBP = infb∈B∩B0 ν(b), where

ν(b) = sup
λ∈Rdg +K

E

[
λᵀJ(D)h(DY ,X , b)

1− pD
−

Df ∗(λᵀh(DY ,X , b))

pD︸ ︷︷ ︸
:=ϕ(D,DY ,X ,b,λ,p)

]

I Straightforward sample analogue estimators: δ̂BPn = infb∈B0 ν̂n(b), where

ν̂n(b) = sup
λ∈Rdg +K

1

n

n∑
i=1

ϕ(Di ,DiYi ,Xi , b, λ, p̂D,n)

I Under additional regularity conditions, estimators are consistent:

ν̂n
p→ ν in `∞(B), δ̂BPn

p→ δBP

Consistency Assumptions
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Inference: asymptotic distributions

Theorem Under assumptions discussed in the paper,

√
n(ν̂n − ν)

L→ Gν in `∞(B)

I Intuition: for a fixed b, view estimation as GMM:

1

n

n∑
i=1

ϕ(Di ,DiYi ,Xi , b, λ̂n(b), p̂D,n)− ν̂n(b)

∇λϕ(Di ,DiYi ,Xi , b, λ̂n(b), p̂D,n)
Di − p̂D,n

 = 0

which is asymptotically linear. This linearization is shown to hold uniformly over b ∈ B.

Theorem Suppose the same assumptions hold. Then m(ν) = arg minb∈B∩B0
ν(b) is nonempty

and √
n(δ̂BPn − δBP)

L→ inf
b∈m(ν)

Gν(b)

I Follows from Hadamard directional differentiability of ν 7→ infb∈B∩B0
ν(b) and the functional

delta method (Fang and Santos (2019)).

I m(ν) is plausibly a singleton: {bi}. If so,
√
n(δ̂BPn − δBP) is asymptotically normal.
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Inference: lower confidence intervals

I A large δBP assuages selection concerns

I Skeptical readers may worry δ̂BPn > δBP due to sample noise

• The argument is only strengthened if δ̂BPn < δBP

I Reporting a lower confidence interval addresses this concern:

lim
n→∞

P

(
δ̂BPn −

1√
n
ĉ1−α,n︸ ︷︷ ︸

ĈIL,n

≤ δBP
)

= 1− α

I ĉ1−α,n is estimated with the score bootstrap

• Assuming m(ν) = arg minb∈B∩B0
ν(b) is the singleton {bi}, ĉ1−α,n is computed with a

computationally convenient procedure

Score Bootstrap
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Simulations: uniform expectation

I Example: The sample is {Di ,DiYi}ni=1, and β = E [Y ] ∈ R.

Y | D = 1 ∼ U [0, 1], pD = P(D = 1) = 0.7

The claim to be supported is H1 : β > 0.4.

I 250 simulations with P(D = 1) = 0.7, and δBP ≈ 0.2:

Table: Simulations, Squared Hellinger, Uniform, Mean

n RMSE Emp. Bias Emp. CI Coverage Ave. CI Length

1000 0.060 0.008 98.4 0.091
2000 0.040 0.005 97.6 0.063
3000 0.032 0.001 96.8 0.051
5000 0.024 0.003 96.4 0.040

Illustration

Daniel Ober-Reynolds (UCLA) Missing Data, Breakdown Point 23 June 2023 17 / 19



Simulations: OLS

I Consider a linear model

Y1 = β0 + β1X1 + β2Y2 + β3X2 + ε = W ᵀβ + ε, E [W ε] = 0

where X1,X2 are discrete and Y1,Y2 are continuous.

I The conclusion to be investigated is H1 : β1 > 0. The observed data is
{Di ,DiYi1,DiYi2,Xi1,Xi2}ni=1.

I 250 simulations from a DGP with P(D = 1) ≈ 0.7, and δBP ≈ 0.2:

Table: Simulations, Squared Hellinger, OLS

n RMSE Emp. Bias Emp. CI Coverage Ave. CI Length

1000 0.043 0.009 100.0 0.078
2000 0.033 0.005 98.0 0.052
3000 0.026 0.007 98.0 0.043
5000 0.017 0.002 98.0 0.032

I Empirical coverage suggests inference is conservative.

Daniel Ober-Reynolds (UCLA) Missing Data, Breakdown Point 23 June 2023 18 / 19



Conclusion

I Breakdown point analysis is a tractable approach to assessing how robust a
conclusion is to relaxing common missing data assumptions.

I For the conclusion β ∈ B \ B0, the claim β ∈ B0 implies

δBP ≤ 1−
EP [
√

Var(D | Y ,X )]√
Var(D)

If it is implausible (Y ,X ) predicts D this well, then β ∈ B0 is similarly implausible.

I The breakdown point δBP is
√
n-estimable, and lower confidence intervals can be

constructed with simple bootstrap procedures.

I Reporting δ̂BPn and the lower confidence interval ĈI L,n is a succinct summary of a
conclusion’s robustness.
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Missing (completely) at random

I With i.i.d. sample {Di ,DiYi ,Xi}ni=1, where Di = 1{Yi is observed}

(Y ,X ) | D = 1 ∼ P1, (Y ,X ) | D = 0 ∼ P0,

P = pDP1 + (1− pD)P0

two common assumptions restore point identification of P

I Missing completely at random (MCAR) assumes P0 = P1

• Testable: do distributions of X match? P0X = P1X ?
• Justifies dropping observations where Di = 0

I Missing at random (MAR) assumes Y | X = x ,D = 0 follows the same distribution
as Y | X = x ,D = 1

• Not testable
• Justifies imputating Y | X = x ,D = 0 based on distribution of Y | X = x ,D = 1

I Preliminary analysis may be based on either assumption.

Setting
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Assumption: P0 is dominated by P1

I Assumption: P0 is dominated by P1, i.e. P0 � P1.
• For any set A with P1((X ,Y ) ∈ A) = 0, then P0((X ,Y ) ∈ A) = 0.
• Simplifies analysis considerably; set of possible P0 characterized by densities wrt P1
• Allows squared Hellinger to be written as an f -divergence

I Some support assumption is typically necessary for an interesting exercise.
• Example: β = E [Y ]. P1 and P0 given by

P1(Y = −1) = 0.5 P1(Y = 1) = 0.5

P0(Y = −1) = 0.5 P0(Y = 1) = 0.5− α P0(Y = y) = α

Then

H2(P0,P1) = (
√

0.5− α−
√

0.5 +
√
α)2

can be made arbitrarily close to zero by choice of α > 0. For any α > 0,

EP [Y ] = (1− pD)EP0
[Y ] = (1− pD)α(y − 1)

can be made any number by choice of y ∈ R.

f -divergence Squared Hellinger
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Other selection measures: f -divergences
I Given a convex function f : R→ [0,∞] satisfying f (t) =∞ for t < 0 and taking a unique

minimum of f (1) = 0, the corresponding f -divergence is the function given by

df (Q‖P) =

{∫
f
(

dQ
dP

)
dP if Q � P

∞ otherwise
(3)

I Many popular divergences can be written as f -divergences (when Q � P):

Name Common formula f (t) when t ≥ 0

Squared Hellinger H2(Q,P) = 1
2

∫ (√
dQ
dP (z)− 1

)2

dP(z) f (t) = 1
2 (
√
t − 1)2

Kullback-Leibler (KL) KL(Q‖P) =
∫

log
(
dQ
dP (z)

)
dQ(z) f (t) = t log(t)− t + 1

“Reverse” KL KL(P‖Q) =
∫

log
(

dP
dQ (z)

)
dP(z) f (x) = − log(t) + t − 1

Cressie-Read – fγ(t) = tγ−γt+γ−1
γ(γ−1) , γ < 1

Table: Common f -divergences

I Results in the paper allow any f -divergence (satisfying certain regularity conditions) to be
used to measure selection

Squared Hellinger
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Breakdown Point through Partial Identification

I Breakdown point analysis can be framed as an exercise in partial identification, as in
Kline and Santos (2013), Masten and Poirier (2020), and Diegert et al. (2022).

I In this framing, consider assumptions of the form H2(P0,P1) ≤ δ for some δ > 0.

I The nominal identified set BID(δ) for β grows with δ. As long as BID(δ) ⊆ B \ B0, it
is clear the conclusion holds.

I The breakdown point δBP can then be defined as either:

1. the largest δ for which BID(δ) ⊆ B \ B0, or
2. the smallest δ for which BID(δ) ∩ B0 6= ∅

Breakdown Point
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Dual problem (detailed)

I The dual problem using squared Hellinger is

V (b) = sup
λ∈Rdg +K

E

[
λᵀJ(D)h(DY ,X , b)

1− pD
−

Df ∗(λᵀh(DY ,X , b))

pD

]
where

J(D) =

[
−DIdg 0

0 (1− D)IK

]
, h(DY ,X , b) =


g(DY ,X , b)
1{X = x1}

...
1{X = xK}

 ,

f ∗(r) =

{
1
2

(
1

1−2r
− 1
)

if r < 1/2

∞ o.w.

and {x1, . . . , xK} is the support of X .

I f ∗(r) = supt∈R{rt − f (t)} is the convex conjugate of f (t), the function defining the
f -divergence used to measure selection.

Duality f -divergences
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Formal assumptions: setting and strong duality

Assumption 1 (Setting) {Di ,DiYi ,Xi}ni=1 is an i.i.d. sample from a distribution
satisfying

(i) pD = P(D = 1) ∈ (0, 1)

(ii) X | D = 1 and X | D = 0 have the same finite support {x1, . . . , xK}
(iii) E [supb∈B‖g(Y ,X , b)‖ | D = 1] <∞

Assumption 2 (Strong duality) B ⊆ B is such that infb∈B0 ν(b) = infb∈B∩B0 ν(b).
Furthermore, for each b ∈ B,

(i) there exists Qb ∈ Pb such that 0 < ∂Qb

∂P1
(y , x) <∞, almost-surely P1.

(ii) λ(b) solving the dual problem is in the interior of
{λ ; E [|f ∗(λᵀh(Y ,X , b))| | D = 1] <∞.

Duality
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Formal assumptions: consistency

Assumption 3 (Consistency)

(i) B is compact

(ii) g(y , x, b) is continuous in b for all (y , x)

(iii) For each b ∈ B, {hj (y , x, b)}dg +K

j=1 are linearly independent in the sense that for any

λ 6= 0 ∈ Rdg +K ,
P(λᵀh(Y ,X , b) 6= 0 | D = 1) > 0

(iv) For each b ∈ B, there exists a closed convex Λ̄b with λ(b) ∈ int(Λ̄b) such that

Λ̄B =
{

(b, λ) ; b ∈ B, λ ∈ Λ̄b
}

is copmact, and for some open N ⊂ R containing pD ,

E

[
sup
p∈N

sup
(b,λ)∈Λ̄B

|ϕ(D,DY ,X , b, λ, p)|
]
<∞,

E

[
sup

(b,λ)∈Λ̄B
‖∇λϕ(D,DY ,X , b, λ, pD )‖

]
<∞, E

[
sup

(b,λ)∈Λ̄B
‖∇2

λϕ(D,DY ,X , b, λ, pD )‖
]
<∞

If assumptions 1, 2, and 3 hold, then ν̂n
p→ ν in `∞(B) and δ̂BPn

p→ δBP .

Estimators
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Formal assumptions: inference
Let θ(b) = (ν(b), λ(b), pD ), θ = (v , λ, p),

φ(D,DY ,X , b, θ) = φ(D,DY ,X , b, v , λ, p) =

ϕ(D,DY ,X , b, λ, p)− v
∇λϕ(D,DY ,X , b, λ, p)

D − p

 ,

Θb =
{
θ = (v , λ, p) ; v ∈ [0,V], λ ∈ Λ̄b, p ∈ [p, p]

}
, and θB =

{
(b, θ) ; b ∈ B, θ ∈ Θb

}
.

Assumption 4 (Inference) Suppose that

(i) B0 is closed

(ii) B is convex

(iii) g(z, b) is continuously differentiable with respect to b

(iv) θ̂n(b) = (ν̂n(b), λ̂n(b), p̂D,n) ∈ Θb for each b

(v) There exists F (d, dy , x) such that

sup
b∈B

sup
θ∈Θb
‖∇(b,θ)φ(d, dy , x, b, θ)‖ ≤ F (d, dy , x)

and E [F (D,DY ,X )2] <∞.

If assumptions 1, 2, 3, and 4 hold, then

√
n(ν̂n − ν)

L→ Gν in `∞(B), and
√
n(δ̂BPn − δ

BP )
L→ inf

b∈m(ν)
Gν(b) in R

Asymptotic Distributions

Daniel Ober-Reynolds (UCLA) Missing Data, Breakdown Point 23 June 2023 9 / 10



Score bootstrap

I Let {Wi}ni=1 be i.i.d. scalars, independent of {Di ,DiYi ,Xi}ni=1, satisfying

(i) E [W ] = 0,

(ii) E [W 2] = 1, and

(iii) E [|W |2+a] <∞ for some a > 0.

I Let Φ̂n(b) = 1
n

∑n
i=1∇θφ(Di ,DiYi ,Xi , b, θ̂n(b)),

Ĝ∗n (b) = Φ̂n(b)−1 1
√
n

n∑
i=1

Wiφ(Di ,DiYi ,Xi , b, θ̂n(b))

and Ĝ∗n (b, 1) be the first coordinate of the vector Ĝ∗n (b).

Bootstrap procedure

1. Compute b̂i
n = arg minb∈B∩B0

ν̂n(b),

2. Generate N bootstrap samples {Wi}ni=1 from a distribution with moments described above, and

compute Ĝ∗n (b̂i
n, 1) for each of the N bootstrap samples,

3. Let ĉ1−α,n be the 1− α quantile of {Ĝ∗n,k (b̂i
n, 1)}Nk=1.

If assumptions 1, 2, 3, and 4 hold, and m(ν) = arg minb∈B∩B0
ν(b) is the singleton {bi}, then

limn→∞ P
(
δ̂BPn − 1√

n
ĉ1−α,n ≤ δBP

)
= 1− α.

Inference: lower confidence intervals
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