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Introduction

» Missing data is common, as are the selection concerns it raises

» Common solution: assume data are Missing (Completely) At Random
® |Impute or ignore incomplete observations, use standard methods
® Convenient solution, often implausible justification

» This paper proposes an interpretable measure of selection, and estimates how
much selection is needed to overturn a conclusion
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Missing Data

> Bollinger et al. (2019) “Trouble in the Tails? What We Know about Earnings
Nonresponse 30 Years after Lillard, Smith, and Welch”

® CPS ASEC 2015 item and whole nonresponse rate: 43%

® By linking data with SSA tax records, show missing earnings data is not MAR
> Finkelstein et al. (2012), “The Oregon Health Insurance Experiment: Evidence From
the First Year”

® Survey data shows Medicaid improved self-reported physical/mental health

® Only 50% of survey recipients responded.

® When Lee (2009) sample selection bounds were applied, this conclusion could no longer
be supported.

Daniel Ober-Reynolds (UCLA) Missing Data, Breakdown Point 23 June 2023 3/19



Related literature

» Missing data without MAR

® Point identification: Heckman (1979), Das et al. (2003)
® Partial identification: Manski (2005), Lee (2009)
® Robustness/sensitivity analysis: Kline and Santos (2013)

> Robustness/sensitivity analysis
® Missing data: Kline and Santos (2013)
® Potential outcomes: Masten and Poirier (2020)
® Omitted variable bias: Diegert et al. (2022)

=- This paper contributes a robustness exercise for missing data that

i

ii.
iii.
iv.

allows for any number of variables to be missing

directly uses the researcher's GMM model

requires no additional data or modeling (no exclusion restriction)
gives results that are succinct and interpretable
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Setting

» Data is i.i.d. sample {D;, D;Y;, Xi}i_;, where D; = 1{Y; is observed}.

® Variables of interest are (Y, X) € R% x R%.
® Y may be a vector. If present, X; is assumed finitely supported

® Example: Y; = (Y,-(l), Y,-(z)) € R? collected through survey, X; is administrative data
(age, occupation, etc.).

> Parameter § € B C R% is identified through moment conditions
Erlg(Y,X,b)]=0if and only if b=
where P is the unconditional distribution of (Y, X).

- y () 1 2
® Example: OLS coefficients g(Y, X, b) = X (YD — (Y@, XT)b)

» Conclusion to be investigated is that g is outside By
Ho:ﬂeBo VS H1Zﬂ€B\B0

® Example: first OLS coefficient is positive. B = {b € B ; b < 0}
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Setting

> Let pp = P(D=1), X | D=0~ Pox, and

(va)‘D:]-NPh (Y7X)|D:0N’D07
P =poP1+(1—pp)Fo
® The sample {D;, D;Y;, X;}7_,, identifies pp, P1, and Pox...
® _.but not Py, P, or 3 solving Ep[g(Y,X,8)]=0

» Common solution: estimate /31 instead

EPl[g(Yaxaﬂl)] =0
MCAR is the assumption Py = P;. Implies P = P; and 8 = (1.
» Suppose preliminary analysis suggests 51 € B\ Bg, but MCAR is doubtful.
® Hope to defend 8 € B\ By

® So Py # P;... but how different could they plausibly be?
® A quantitative measure of selection will allow meaningful discussion.
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Quantifying selection: predictive power of (Y, X)

Sample is {D;, D;Y;, Xi}_y, i.id.. pp = P(D = 1),

(Y, X)| D=1~ P, (Y, X) | D=0~ Py,
P =ppP1+(1— pp)Po

> Selection is a greater concern when context suggests (Y, X) would predict D well

® Example: survey asking about arrest record, vs. survey asking about TV preferences

» See this formally with densities. Let fi, fy be densities of P1, Py wrt P. Then

1_PD(}’7X)
1—-pp

po(y,x)

fily,x) = foly,x) =

where pp(y,x) =P(D=1|Y =y, X = x).

® Optimistic: D is independent of (Y, X).
=> pp(y,x) = pp, so fi = fy (data is MCAR)

® Pessimistic: D is almost a function of (Y, X).
= pp(y,x) =~ 1or0; fi and fy look quite different
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Quantifying selection with squared Hellinger

» Measure selection as the squared Hellinger distance between Py and P;i:

H2(Po, P1) = 2 Ep [(VA(Y, X) — VATV, X))7]

where fo(y, x) and fi(y, x) are densities of Py and P wrt P.

> fi(y,x) = po(y,x)/po and fo(y,x) = (1 — po(y,x))/po implies

Er [VVar(D V. X)]
VVar(D)

H2(Pg, P1) =1—

® |nterpretation: expected percent standard deviation of D “explained” by (Y, X)
® Captures intuition: more predictive power, higher selection
® Range is [0,1]. Equals 0 < Var(D | Y, X) = Var(D), equals 1 < Var(D | Y, X) =0

» Assumption: Py is dominated by P;.

® Rules out selection mechanisms that “truncate” data; e.g. D; = 1{Y; < c}.

Other Selection Measures
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Recap

> Setting:
® Model: Ep[g(Y,X,8)]=0
Hypothesis test: Hyp : 8 € Bo vs H1 : B € B\ Bg
Data: {D;, D;Y;, X;}7_, i.i.d.. with D; = 1{Y] is observed}.
Identified: pp, Pi, Pox. Not identified: P = ppP1 + (1 — pp)Po, or 8
Measure of selection: H2(Py, P1) = 1 — Ep[y/Var(D | Y, X)]/+/Var(D)

> (3 solves Ep, [g(Y, X, 51)] = 0; preliminary analysis suggests 51 € B\ Bo

» How much selection is needed to overturn the conclusion?
® Given pp, P1, and Pyx how large must H?(Py, P1) be to rationalize 3 € Bg?
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Overview

© Breakdown Point Analysis
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Breakdown point

> Let P? be the set of distributions Q dominated by P; with marginal Qx = Pox and
0= poErlg(Y. X, b)] + (1 — po)Ealg (Y, X, b)]
say Q rationalizes b.
» The breakdown point is the minimum selection needed to rationalize 8 € Bo:

6%° = inf inf H*(Q,P1)
beBg QePP

> Large values of 657 assuage selection concerns

® The claim 8 € By implies 65 < 1H2(Py, P) =1 — Ep [\/Var(D \ Y,x)] /+/Var(D)
® |f the claim (Y, X) predicts D this well is implausible, then 3 € By is implausible.
® Context matters! Example: Survey about arrest record vs. survey about TV

> 58P is point identified

® Reporting estimates Sfp can facilitate selection concern discussions
® Worries that 57 > §57 (due to sample noise) can be addressed with lower confidence intervals
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Breakdown point: uniform expectation

6BP = inf inf H?*(Q,Py)
bEBy QePb

v(b)
> Example: The sample is {D;, D;Y;}i_;, and 8 = E[Y] € R.
Y| D=1~ul0,1], pp=P(D=1)=0.7
The claim to be supported is H; : 8 > 0.4.

Value Function v(b) Optimal Distribution
T
o5 — v(b) — pp x U[0, 1] density
Ho 1737 —— pp+(1-pp)0
1.50 4
0.4
1254
0.3
1004
BP _
02 6" = 0.2 0.75 4
0.50 4
0.1
0.25 4
0.0 0.00
0.35 0.40 0.45 0.50 055 0.60 0.65 0.0 0.2 0.4 0.6 0.8 10
b y
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Estimation overview

» The breakdown point:
§BP = inf inf H?*(Q,Py)
beBy QeP?

v(b)

is estimated with a two-step procedure:
1. Dn(b) estimates z/(b) |an€Pb H*(Q, P1)
2. Plug-in second step 65F = inf,cg, v(b)

» D,(b) based on finite dimensional, well-behaved dual problem
» Second stage estimator analyzed using functional delta method

» Lower confidence intervals constructed using bootstrap procedure

Skip to Simulations
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Duality

» The primal problem is
v(b) = inf H*(Q,P1) (1)
QePb

» The dual problem is

T *(\T
V(b)= sup E ATJ(D)h(DY,X,b)  Df*(ATh(DY, X, b))
AcREHK 1-pp pD

)

a finite dimensional convex optimization problem.

® f* Jand h are known functions,
® the expectation is wrt the distribution of (D, DY, X), and
® K is the cardinality of Supp(X).

» Under regularity conditions, strong duality holds:
V(b) = v(b)

® Assume this holds for all b € B C B, with infyep, v(b) = infrecpng, v(b)
® — we can focus on the dual problem.

Dual problem detail Strong duality assumptions
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Estimators

> With strong duality, the breakdown point is 657 = infycpnp, (b), where

T * T
vb)= sup E ATJ(D)h(DY,X,b)  DF*(ATh(DY, X, b))
A€RI%+K 1-pp PD
=(D,DY ,X,b,\,p)

> Straightforward sample analogue estimators: §5F = infoep, Dn(b), where

Da(b) = sup 1z:c,o(Df,D;Yf,Xi,b,>\,ﬁD,n)

AeRIgHK N 1
» Under additional regularity conditions, estimators are consistent:

bn Bv int>®(B), §BP 2, 58P

Consistency Assumptions
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Inference: asymptotic distributions

Theorem Under @ZEED discussed in the paper,
Vn(on —v) 5 G, in £°°(B)

» Intuition: for a fixed b, view estimation as GMM:
1 @(D;, DiYi, Xi, b, An(b), Bp.n) — Dn(b)
Vae(Di, DiY;, Xi, b, \n(b), Pp,n) =0
i=1 Di — pp,n

which is asymptotically linear. This linearization is shown to hold uniformly over b € B.

Theorem Suppose the same & hold. Then m(v) = arg min,cgnp, v(b) is nonempty

and
Vn(88P — 6BP) 5 inf G, (b)
bem(v)

> Follows from Hadamard directional differentiability of v — inf,cpnp, v(b) and the functional
delta method (Fang and Santos (2019)).

> m(v) is plausibly a singleton: {b'}. If so, v/n(68P — §8P) is asymptotically normal.
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Inference: lower confidence intervals

> A large 657 assuages selection concerns

» Skeptical readers may worry 58P > §BP due to sample noise
® The argument is only strengthened if 3,“,3') < §BP

» Reporting a lower confidence interval addresses this concern:

. 2 1,
lim P 5,,BP — —C&-an< PPl =1-a
n—oco \/ﬁ
| —
Clyn

» Ci_a,n is estimated with the score bootstrap

® Assuming m(v) = arg min,cgng, v(b) is the singleton {b'}, é1—q,n is computed with a
computationally convenient procedure

Score Bootstrap
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© Simulations
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Simulations: uniform expectation

> Example: The sample is {D;, D;Y;}?_;, and 8 = E[Y] € R.
Y |D=1~U[0,1], pp=P(D=1)=0.7

The claim to be supported is Hy : 3 > 0.4.

> 250 simulations with P(D = 1) = 0.7, and §5F ~ 0.2:

Table: Simulations, Squared Hellinger, Uniform, Mean

n RMSE Emp. Bias Emp. Cl Coverage Ave. Cl Length

1000  0.060 0.008 98.4 0.091
2000  0.040 0.005 97.6 0.063
3000 0.032 0.001 96.8 0.051
5000 0.024 0.003 96.4 0.040
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Simulations: OLS

» Consider a linear model
Y1 =080+ p1X1 + B2Ya+ B3 Xo +e=WTB +e, E[We] =0

where Xi, X, are discrete and Y7, Y2 are continuous.

» The conclusion to be investigated is H; : 1 > 0. The observed data is
{Di, D; Y1, Di Yz, Xi1, Xi2 }7_q-

> 250 simulations from a DGP with P(D = 1) ~ 0.7, and 657 ~ 0.2

Table: Simulations, Squared Hellinger, OLS

n RMSE  Emp. Bias Emp. Cl Coverage Ave. Cl Length

1000  0.043 0.009 100.0 0.078
2000 0.033 0.005 98.0 0.052
3000 0.026 0.007 98.0 0.043
5000 0.017 0.002 98.0 0.032

» Empirical coverage suggests inference is conservative.
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Conclusion

» Breakdown point analysis is a tractable approach to assessing how robust a
conclusion is to relaxing common missing data assumptions.

» For the conclusion 8 € B\ By, the claim 8 € By implies

5B <1 Ep[\/Var(D | Y, X)]
N +/Var(D)

If it is implausible (Y, X) predicts D this well, then 8 € By is similarly implausible.

> The breakdown point 657 is y/n-estimable, and lower confidence intervals can be
constructed with simple bootstrap procedures.

58P

n

» Reporting and the lower confidence interval Cl; , is a succinct summary of a

conclusion’s robustness.
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Missing (completely) at random
» With i.i.d. sample {Di, D;Yi, Xi}i_;, where D; = 1{Y; is observed}
(Y,X)| D=1~ Py, (Y, X)| D=0~ Py,
P =poP1+(1—pp)Fo

two common assumptions restore point identification of P

> Missing completely at random (MCAR) assumes Py = P;

® Testable: do distributions of X match? Pyx = Pix?
® Justifies dropping observations where D; = 0

> Missing at random (MAR) assumes Y | X = x, D = 0 follows the same distribution
asa Y| X=x,D=1

® Not testable
® Justifies imputating Y | X = x, D = 0 based on distribution of Y | X =x,D =1

» Preliminary analysis may be based on either assumption.
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Assumption: Py is dominated by P;

» Assumption: Py is dominated by Py, i.e. Py < Ps.
® For any set A with P1((X,Y) € A) =0, then Py((X,Y) € A) =0.
® Simplifies analysis considerably; set of possible Py characterized by densities wrt P;
® Allows squared Hellinger to be written as an f-divergence

» Some support assumption is typically necessary for an interesting exercise.
® Example: 8 = E[Y]. P1 and P, given by

Pi(Y =-1)=05 Pi(Y=1)=05
Po(Y =—-1)=05 Po(Y =1)=05—« Po(Y =y)=«
Then
H?(Po, P1) = (V05 — o — V0.5 + Va)?
can be made arbitrarily close to zero by choice of & > 0. For any a > 0,
Ep[Y]= (1= pp)Ep[Y] = (1 — pp)a(y — 1)

can be made any number by choice of y € R.

Squared Hellinger
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Other selection measures: f-divergences

> Given a convex function f : R — [0, oo] satisfying f(t) = oo for t < 0 and taking a unique
minimum of f(1) = 0, the corresponding f-divergence is the function given by

f dP if Q<P
4:(QIIP) = {f (%) , ®)
otherwise
> Many popular divergences can be written as f-divergences (when Q < P):

Name ‘ Common formula ‘ f(t) when t > 0
Squared Hellinger HYQ,P) =1 (‘/7 - 1) dpP(z) | f(t) = 3(vVt—1)?
Kullback-Leibler (KL) | KL(Q|P) = [ log (2(z)) dQ(z) f(t) =tlog(t) —t+1
“Reverse” KL KL(P||Q) = [ log ( (2) ) dP(z) f(x) = —log(t)+t—1
Cressie-Read - (1) = W;&%ﬁfl, v <1

Table: Common f-divergences

> Results in the paper allow any f-divergence (satisfying certain regularity conditions) to be
used to measure selection

Squared Hellinger
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Breakdown Point through Partial Identification

» Breakdown point analysis can be framed as an exercise in partial identification, as in
Kline and Santos (2013), Masten and Poirier (2020), and Diegert et al. (2022).

> In this framing, consider assumptions of the form H?(Po, P) < § for some & > 0.

» The nominal identified set B;p(d) for 8 grows with §. As long as B;p(d) C B\ By, it
is clear the conclusion holds.

5BP

» The breakdown point can then be defined as either:

1. the largest 6 for which B;p(6) C B\ By, or
2. the smallest ¢ for which B;p(§) N Bg # @

Breakdown Point
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Dual problem (detailed)

» The dual problem using squared Hellinger is
D)h(DY, X, b) _ Df*(ATh(DY, X, b))

V(b) = sup E[/\TJ(

AcRIEHK 1-pp PD
where
g(DY, X, b)
I{X =x1}
__ [-Dly 0 .
J(D)_ 0 € (1—D)IK:|7 h(DY,X,b)— : ’
1{X = xk}

(25 -1) ifr<ip2
o.w.

8 NI

F(r) = {

and {x1,...,xk} is the support of X.

> f*(r) =sup.cr{rt — f(t)} is the convex conjugate of f(t), the function defining the
f-divergence used to measure selection.
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Formal assumptions: setting and strong duality

Assumption 1 (Setting) {D;, D;Y;, Xi}/—; is an i.i.d. sample from a distribution

satisfying
(i) pp=P(D=1)€(0,1)
(i) X | D=1and X | D =0 have the same finite support {xi,...,xx}

(iii) E[supyegllg(Y, X, b | D=1] < oo

Assumption 2 (Strong duality) B C B is such that infycg, v(b) = infreani, v(b).

Furthermore, for each b € B,
(i) there exists Q" € P? such that 0 < g—?,f(y,x) < 00, almost-surely P;.

(i) A(b) solving the dual problem is in the interior of
(N5 E[IfF*(NTh(Y, X, b))| | D = 1] < co.
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Formal assumptions: consistency

Assumption 3 (Consistency)
(i) B is compact
(i) g(y, x, b) is continuous in b for all (y, x)
(iii) For each b € B, {hj(y, x, b)}fer are linearly independent in the sense that for any

A #0 e R%EK,

PATH(Y,X,b)#0|D=1)>0

(iv) For each b € B, there exists a closed convex A® with A(b) € int(A?) such that

AB = {(b7 A); beB, A€ /-\b} is copmact, and for some open N/ C R containing pp,

E [SUP sup  |o(D, DY,X,bJ\,P)I} < oo,
PEN (b,X)cAB

b,\)eAB (b,A\)eAB

E[ sup |\V>\<p(D,DY,X,b,/\,pD)||:| < o0, E[ sup  ||V3@(D, DY, X, b, X, pp)||| < oo
ey

If assumptions 1, 2, and 3 hold, then 7, L vin £°°(B) and SEP Ly 58P,
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Formal assumptions: inference
Let (b) = (1(b), A(b), p). 0 = (v, A, p),
(qs(o, DY, X, b, A, p) - )
(D, DY, X, b,0) = ¢(D,DY,X,b,v,\,p) = | Vae(D,DY,X,b,\,p) |,
D—-p

o ={0=(v.\p):ve V], AeN pelppl} and0° = {(b,0); beB,ocO}.

Assumption 4 (Inference) Suppose that

(i) By is closed

(ii) B is convex

(iii) g(z, b) is continuously differentiable with respect to b
(iv) 0a(b) = (Pn(b), An(b), Pp.n) € O for each b

(v) There exists F(d, dy, x) such that

sup sup ||V (p,6)$(d, dy, x, b, 0)|| < F(d, dy, x)
beB geob

and E[F(D, DY, X)?] < co.

If assumptions 1, 2, 3, and 4 hold, then

V(o — v) 5 G, in £°(B), and Vn(3EP — 58Py & ,dnf Gu(b) in R
em(v

Asymptotic Distributions
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Score bootstrap
P> Let {W;}]_, bei.id. scalars, independent of {D;, D;Y;, Xi}7_,, satisfying
(iy E[W]=0,
(i) E[W?] =1, and
(iii) E[|W|**?] < oo for some a > 0.

> Let &,(b) = L 527, Voo(D;, D;Y;, Xi, b, (b)),
A . 1 < A
Gr(b) = ®,(b) T == > Wi(Di, D; Vi, X;, b, 6,(b))
=

and G (b, 1) be the first coordinate of the vector G (b).

Bootstrap procedure
1. Compute b, = argminycgrg, 7n(b),
2. Generate N bootstrap samples {W;}_, from a distribution with moments described above, and

compute C:',T(E;, 1) for each of the N bootstrap samples,

3. Let & _q,n be the 1 — o quantile of {C:';k(f);,, 1)}2’:1.

If assumptions 1, 2, 3, and 4 hold, and m(v) = arg min,e png, v(b) is the singleton {b'}, then
limps o0 P (85" —lg an< 53") =1-a

Vn

Inference: lower confidence intervals
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